Summarizing Patients' Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models.

Yanjun Gao, Timothy Miller, Dongfang Xu, Dmitriy Dligach, Matthew M Churpek, Majid Afshar
{"title":"Summarizing Patients' Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models.","authors":"Yanjun Gao,&nbsp;Timothy Miller,&nbsp;Dongfang Xu,&nbsp;Dmitriy Dligach,&nbsp;Matthew M Churpek,&nbsp;Majid Afshar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.</p>","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"2022 ","pages":"2979-2991"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9581107/pdf/nihms-1840629.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用预先训练的序列到序列模型总结医院进展记录中的患者问题。
使用自然语言处理方法从每日病程记录中自动总结患者的主要问题,有助于对抗医院环境中的信息和认知超载,并可能帮助提供者提供计算机化的诊断决策支持。问题列表总结需要一个模型来理解、抽象和生成临床文档。在这项工作中,我们提出了一个新的NLP任务,旨在使用住院期间提供者的进度记录输入生成患者日常护理计划中的问题列表。我们研究了T5和BART这两种最先进的seq2seq变压器架构在解决这个问题方面的性能。我们提供了一个基于重症监护医疗信息市场(MIMIC)-III中公开可用的电子健康记录进度记录的语料库。T5和BART在一般领域文本上进行训练,我们采用数据增强方法和领域适应预训练方法来增加医学词汇和知识的接触。评价方法包括ROUGE、BERTScore、句子嵌入余弦相似度和医学概念f分。结果表明,与基于规则的系统和一般的领域预训练语言模型相比,具有领域自适应预训练的T5取得了显著的性能提升,为解决问题摘要任务指明了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1