TestAug: A Framework for Augmenting Capability-based NLP Tests

Guanqun Yang, Mirazul Haque, Qiaochu Song, Wei Yang, Xueqing Liu
{"title":"TestAug: A Framework for Augmenting Capability-based NLP Tests","authors":"Guanqun Yang, Mirazul Haque, Qiaochu Song, Wei Yang, Xueqing Liu","doi":"10.48550/arXiv.2210.08097","DOIUrl":null,"url":null,"abstract":"The recently proposed capability-based NLP testing allows model developers to test the functional capabilities of NLP models, revealing functional failures for models with good held-out evaluation scores. However, existing work on capability-based testing requires the developer to compose each individual test template from scratch. Such approach thus requires extensive manual efforts and is less scalable. In this paper, we investigate a different approach that requires the developer to only annotate a few test templates, while leveraging the GPT-3 engine to generate the majority of test cases. While our approach saves the manual efforts by design, it guarantees the correctness of the generated suites with a validity checker. Moreover, our experimental results show that the test suites generated by GPT-3 are more diverse than the manually created ones; they can also be used to detect more errors compared to manually created counterparts. Our test suites can be downloaded at https://anonymous-researcher-nlp.github.io/testaug/.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"7 1","pages":"3480-3495"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recently proposed capability-based NLP testing allows model developers to test the functional capabilities of NLP models, revealing functional failures for models with good held-out evaluation scores. However, existing work on capability-based testing requires the developer to compose each individual test template from scratch. Such approach thus requires extensive manual efforts and is less scalable. In this paper, we investigate a different approach that requires the developer to only annotate a few test templates, while leveraging the GPT-3 engine to generate the majority of test cases. While our approach saves the manual efforts by design, it guarantees the correctness of the generated suites with a validity checker. Moreover, our experimental results show that the test suites generated by GPT-3 are more diverse than the manually created ones; they can also be used to detect more errors compared to manually created counterparts. Our test suites can be downloaded at https://anonymous-researcher-nlp.github.io/testaug/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TestAug:一个增强基于能力的NLP测试的框架
最近提出的基于能力的NLP测试允许模型开发人员测试NLP模型的功能能力,揭示具有良好评估分数的模型的功能故障。然而,现有的基于能力的测试工作要求开发人员从头开始组合每个单独的测试模板。因此,这种方法需要大量的手工工作,并且可伸缩性较差。在本文中,我们研究了一种不同的方法,它要求开发人员只注释几个测试模板,同时利用GPT-3引擎生成大多数测试用例。虽然我们的方法通过设计节省了手工工作,但它保证了使用有效性检查器生成的套件的正确性。此外,我们的实验结果表明,GPT-3生成的测试套件比手动创建的测试套件更多样化;与手动创建的副本相比,它们还可用于检测更多错误。我们的测试套件可以从https://anonymous-researcher-nlp.github.io/testaug/下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension Event Causality Extraction with Event Argument Correlations BERT-Flow-VAE: A Weakly-supervised Model for Multi-Label Text Classification TestAug: A Framework for Augmenting Capability-based NLP Tests Multilingual Word Sense Disambiguation with Unified Sense Representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1