{"title":"Endocrine and metabolic complications of COVID-19: lessons learned and future prospects.","authors":"Abdolreza Esmaeilzadeh, Reza Elahi, Amir Siahmansouri, Armin Jahani Maleki, Amirhosein Moradi","doi":"10.1530/JME-22-0036","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"R125-R150"},"PeriodicalIF":4.7000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0036","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico