Chronicle of a discovery: the retinoic acid receptor.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2022-10-11 Print Date: 2022-11-01 DOI:10.1530/JME-22-0117
Vincent Giguère, Ronald M Evans
{"title":"Chronicle of a discovery: the retinoic acid receptor.","authors":"Vincent Giguère,&nbsp;Ronald M Evans","doi":"10.1530/JME-22-0117","DOIUrl":null,"url":null,"abstract":"<p><p>The landmark 1987 discovery of the retinoic acid receptor (RAR) came as a surprise, uncovering a genomic kinship between the fields of vitamin A biology and steroid receptors. This stunning breakthrough triggered a cascade of studies to deconstruct the roles played by the RAR and its natural and synthetic ligands in embryonic development, skin, growth, physiology, vision, and disease as well as providing a template to elucidate the molecular mechanisms by which nuclear receptors regulate gene expression. In this review, written from historic and personal perspectives, we highlight the milestones that led to the discovery of the RAR and the subsequent studies that enriched our knowledge of the molecular mechanisms by which a low-abundant dietary compound could be so essential to the generation and maintenance of life itself.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"T1-T11"},"PeriodicalIF":4.7000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0117","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

Abstract

The landmark 1987 discovery of the retinoic acid receptor (RAR) came as a surprise, uncovering a genomic kinship between the fields of vitamin A biology and steroid receptors. This stunning breakthrough triggered a cascade of studies to deconstruct the roles played by the RAR and its natural and synthetic ligands in embryonic development, skin, growth, physiology, vision, and disease as well as providing a template to elucidate the molecular mechanisms by which nuclear receptors regulate gene expression. In this review, written from historic and personal perspectives, we highlight the milestones that led to the discovery of the RAR and the subsequent studies that enriched our knowledge of the molecular mechanisms by which a low-abundant dietary compound could be so essential to the generation and maintenance of life itself.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个发现的编年史:视黄酸受体。
1987年,维甲酸受体(RAR)的里程碑式发现令人惊讶,揭示了维生素a生物学和类固醇受体领域之间的基因组亲缘关系。这一惊人的突破引发了一系列研究,以解构RAR及其天然和合成配体在胚胎发育、皮肤、生长、生理、视觉和疾病中所起的作用,并为阐明核受体调节基因表达的分子机制提供了模板。在这篇从历史和个人角度撰写的综述中,我们强调了导致RAR发现的里程碑,以及随后的研究,这些研究丰富了我们对低丰度膳食化合物对生命本身的产生和维持至关重要的分子机制的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1