{"title":"Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales.","authors":"Myriam Jory, Dario Donnarumma, Christophe Blanc, Karim Bellouma, Aurélie Fort, Isabelle Vachier, Laura Casanellas, Arnaud Bourdin, Gladys Massiera","doi":"10.1098/rsfs.2022.0028","DOIUrl":null,"url":null,"abstract":"<p><p>Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected <i>in vivo</i> are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"20220028"},"PeriodicalIF":4.7000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9560788/pdf/rsfs.2022.0028.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2022.0028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Mucus is a viscoelastic aqueous fluid that participates in the protective barrier of many mammals' epithelia. In the airways, together with cilia beating, mucus rheological properties are crucial for lung mucociliary function, and, when impaired, potentially participate in the onset and progression of chronic obstructive pulmonary disease (COPD). Samples of human mucus collected in vivo are inherently contaminated and are thus poorly characterized. Human bronchial epithelium (HBE) cultures, differentiated from primary cells at an air-liquid interface, are highly reliable models to assess non-contaminated mucus. In this paper, the viscoelastic properties of HBE mucus derived from healthy subjects, patients with COPD and from smokers are measured. Hallmarks of shear-thinning and elasticity are obtained at the macroscale, whereas at the microscale mucus appears as a heterogeneous medium showing an almost Newtonian behaviour in some extended regions and an elastic behaviour close to boundaries. In addition, we developed an original method to probe mucus adhesion at the microscopic scale using optical tweezers. The measured adhesion forces and the comparison with mucus-simulants rheology as well as mucus imaging collectively support a structure composed of a network of elastic adhesive filaments with a large mesh size, embedded in a very soft gel.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico