Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer.

IF 4.1 Q2 IMMUNOLOGY Immunotherapy advances Pub Date : 2022-01-25 eCollection Date: 2022-01-01 DOI:10.1093/immadv/ltac005
Rafaela Rossetti, Heloísa Brand, Sarah Caroline Gomes Lima, Izadora Peter Furtado, Roberta Maraninchi Silveira, Daianne Maciely Carvalho Fantacini, Dimas Tadeu Covas, Lucas Eduardo Botelho de Souza
{"title":"Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer.","authors":"Rafaela Rossetti,&nbsp;Heloísa Brand,&nbsp;Sarah Caroline Gomes Lima,&nbsp;Izadora Peter Furtado,&nbsp;Roberta Maraninchi Silveira,&nbsp;Daianne Maciely Carvalho Fantacini,&nbsp;Dimas Tadeu Covas,&nbsp;Lucas Eduardo Botelho de Souza","doi":"10.1093/immadv/ltac005","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either do not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T-cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within the tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T-cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling, and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into a novel and more effective immunotherapeutic approaches to treat patients with cancer.</p>","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1e/14/ltac005.PMC9327125.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltac005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Immune checkpoint (IC) blockade using monoclonal antibodies is currently one of the most successful immunotherapeutic interventions to treat cancer. By reinvigorating antitumor exhausted T cells, this approach can lead to durable clinical responses. However, the majority of patients either do not respond or present a short-lived response to IC blockade, in part due to a scarcity of tumor-specific T cells within the tumor microenvironment. Adoptive transfer of T cells genetically engineered to express chimeric antigen receptors (CARs) or engineered T-cell receptors (TCRs) provide the necessary tumor-specific immune cell population to target cancer cells. However, this therapy has been considerably ineffective against solid tumors in part due to IC-mediated immunosuppressive effects within the tumor microenvironment. These limitations could be overcome by associating adoptive cell transfer of genetically engineered T cells and IC blockade. In this comprehensive review, we highlight the strategies and outcomes of preclinical and clinical attempts to disrupt IC signaling in adoptive T-cell transfer against cancer. These strategies include combined administration of genetically engineered T cells and IC inhibitors, engineered T cells with intrinsic modifications to disrupt IC signaling, and the design of CARs against IC molecules. The current landscape indicates that the synergy of the fast-paced refinements of gene-editing technologies and synthetic biology and the increased comprehension of IC signaling will certainly translate into a novel and more effective immunotherapeutic approaches to treat patients with cancer.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合基因工程T细胞和免疫检查点阻断治疗癌症。
使用单克隆抗体阻断免疫检查点(IC)是目前治疗癌症最成功的免疫治疗干预措施之一。通过重新激活抗肿瘤耗尽的T细胞,这种方法可以导致持久的临床反应。然而,大多数患者对IC阻断没有反应或表现出短暂的反应,部分原因是肿瘤微环境中肿瘤特异性T细胞的缺乏。表达嵌合抗原受体(CARs)或工程化T细胞受体(TCRs)的T细胞过继转移提供了必要的肿瘤特异性免疫细胞群来靶向癌细胞。然而,这种疗法对实体瘤相当无效,部分原因是肿瘤微环境中ic介导的免疫抑制作用。这些限制可以通过将基因工程T细胞的过继细胞转移和IC阻断相结合来克服。在这篇全面的综述中,我们强调了临床前和临床尝试在过继性t细胞转移中破坏IC信号的策略和结果。这些策略包括联合使用基因工程T细胞和IC抑制剂,改造T细胞以破坏IC信号传导,以及设计针对IC分子的car。目前的情况表明,基因编辑技术和合成生物学的快速改进以及对IC信号的进一步理解的协同作用,肯定会转化为一种新的、更有效的免疫治疗方法来治疗癌症患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
A rapid method to assess the in vivo multi-functionality of adoptively transferred engineered TCR T cells. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy. Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells. Tumour-Reactive Plasma Cells in Antitumour Immunity: Current Insights and Future Prospects Establishment of Humanised Xenograft Models as In Vivo Study for Lung Metastasis of Osteosarcoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1