Functional Aspects of Sperm Chromatin Organization.

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2022-01-01 DOI:10.1007/978-3-031-06573-6_10
Jordi Ribas-Maynou, Hieu Nguyen, Hongwen Wu, W Steven Ward
{"title":"Functional Aspects of Sperm Chromatin Organization.","authors":"Jordi Ribas-Maynou,&nbsp;Hieu Nguyen,&nbsp;Hongwen Wu,&nbsp;W Steven Ward","doi":"10.1007/978-3-031-06573-6_10","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671218/pdf/nihms-1849442.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-06573-6_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

Abstract

Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精子染色质组织的功能方面。
在精子发生过程中,由于蛋白蛋白与组蛋白的交换,精子核呈现出高度组织化和浓缩的染色质。这种高度的DNA凝聚导致染色质几乎是惰性的,不可能像在大多数其他体细胞中那样进行基因转录。负责DNA凝聚的主要染色体结构是形成含有25-50千碱基DNA的蛋白蛋白-DNA环状体。这些环状体由环状体连接区(TLR)连接,TLR将环状体连接到核基质上,就像体细胞中的基质连接区(MAR)一样。尽管浓缩程度如此之高,但有证据表明,精子染色质中含有一些脆弱的元素,这些元素即使在完全浓缩的染色质中也可以被降解,这可能与受精时将功能转移给受精卵的染色质区域相对应。本章涵盖了我们的精子染色质结构模型及其影响胚胎发育的潜在功能因素的最新综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1