Linking glycosphingolipids to Alzheimer's amyloid-ß: extracellular vesicles and functional plant materials.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Glycoconjugate Journal Pub Date : 2022-10-01 Epub Date: 2022-08-03 DOI:10.1007/s10719-022-10066-8
Kohei Yuyama, Yasuyuki Igarashi
{"title":"Linking glycosphingolipids to Alzheimer's amyloid-ß: extracellular vesicles and functional plant materials.","authors":"Kohei Yuyama,&nbsp;Yasuyuki Igarashi","doi":"10.1007/s10719-022-10066-8","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide and a carbohydrate head group. GSLs are localized in cell membranes and were recently found to be enriched in the membrane of neuron-derived exosomes, which are a type of extracellular vesicle. Our studies demonstrated that exosomal GSLs may be associated with the amyloid-ß (Aß) peptide, a principal agent of Alzheimer's disease (AD), and act to clear Aß by transporting Aß into brain phagocytic microglia. In this review, we summarize and discuss the function of exosomal GSLs in Aß homeostasis in AD pathology. Improvement in Aß clearance is a potent strategy for AD prevention and therapy. Dietary glucosylceramides (GlcCer) isolated from plants are absorbed into the body as various metabolites, including ceramides. Our recent work demonstrated that dietary GlcCer accelerates neuronal exosome production, which facilitates Aß clearance in mice. Furthermore, studies of AD model mice and human clinical trials have found that oral administration of plant-type GlcCer attenuates the Aß burden in the brain. We also introduce the development of plant-type GlcCer as functional food materials to prevent AD.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-022-10066-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide and a carbohydrate head group. GSLs are localized in cell membranes and were recently found to be enriched in the membrane of neuron-derived exosomes, which are a type of extracellular vesicle. Our studies demonstrated that exosomal GSLs may be associated with the amyloid-ß (Aß) peptide, a principal agent of Alzheimer's disease (AD), and act to clear Aß by transporting Aß into brain phagocytic microglia. In this review, we summarize and discuss the function of exosomal GSLs in Aß homeostasis in AD pathology. Improvement in Aß clearance is a potent strategy for AD prevention and therapy. Dietary glucosylceramides (GlcCer) isolated from plants are absorbed into the body as various metabolites, including ceramides. Our recent work demonstrated that dietary GlcCer accelerates neuronal exosome production, which facilitates Aß clearance in mice. Furthermore, studies of AD model mice and human clinical trials have found that oral administration of plant-type GlcCer attenuates the Aß burden in the brain. We also introduce the development of plant-type GlcCer as functional food materials to prevent AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将糖脂与阿尔茨海默病淀粉样蛋白联系起来-ß:细胞外小泡和功能性植物材料。
鞘糖脂(GSLs)是一类特殊的膜脂,由神经酰胺和碳水化合物头基组成。GSLs定位于细胞膜,最近发现在神经元来源的外泌体(一种细胞外囊泡)的膜中富集。我们的研究表明,外泌体GSLs可能与淀粉样蛋白-ß (ass)肽(阿尔茨海默病(AD)的主要药物)有关,并通过将asb转运到脑吞噬性小胶质细胞来清除asb。本文综述并讨论了外泌体GSLs在AD病理中β稳态中的作用。改善阿斯丁清除是预防和治疗阿尔茨海默病的有效策略。从植物中分离的膳食糖基神经酰胺(glcer)作为各种代谢产物被人体吸收,包括神经酰胺。我们最近的研究表明,饮食中的glcer加速了神经元外泌体的产生,从而促进了小鼠中asb的清除。此外,对AD模型小鼠和人体临床试验的研究发现,口服植物型glcer可减轻脑内asb负荷。并介绍了植物型糖蛋白作为预防AD的功能性食品材料的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
期刊最新文献
Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation. Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei. Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1