From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data.

Kaitlin M Stouffer, Zhenzhen Wang, Eileen Xu, Karl Lee, Paige Lee, Michael I Miller, Daniel J Tward
{"title":"From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data.","authors":"Kaitlin M Stouffer, Zhenzhen Wang, Eileen Xu, Karl Lee, Paige Lee, Michael I Miller, Daniel J Tward","doi":"10.1007/978-3-030-89847-2_1","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in neuroimaging have yielded extensive variety in the scale and type of data available. Effective integration of such data promises deeper understanding of anatomy and disease-with consequences for both diagnosis and treatment. Often catered to particular datatypes or scales, current computational tools and mathematical frameworks remain inadequate for simultaneously registering these multiple modes of \"images\" and statistically analyzing the ensuing menagerie of data. Here, we present (1) a registration algorithm using a \"scattering transform\" to align high and low resolution images and (2) a varifold-based modeling framework to compute 3D spatial statistics of multiscale data. We use our methods to quantify microscopic tau pathology across macroscopic 3D regions of the medial temporal lobe to address a major challenge in the diagnosis of Alzheimer's Disease-the reliance on invasive methods to detect microscopic pathology.</p>","PeriodicalId":93798,"journal":{"name":"Multimodal learning for clinical decision support : 11th International Workshop, ML-CDS 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings. ML-CDS (Workshop) (11th : 2021 : Online)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582035/pdf/nihms-1841308.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal learning for clinical decision support : 11th International Workshop, ML-CDS 2021, held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings. ML-CDS (Workshop) (11th : 2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-89847-2_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in neuroimaging have yielded extensive variety in the scale and type of data available. Effective integration of such data promises deeper understanding of anatomy and disease-with consequences for both diagnosis and treatment. Often catered to particular datatypes or scales, current computational tools and mathematical frameworks remain inadequate for simultaneously registering these multiple modes of "images" and statistically analyzing the ensuing menagerie of data. Here, we present (1) a registration algorithm using a "scattering transform" to align high and low resolution images and (2) a varifold-based modeling framework to compute 3D spatial statistics of multiscale data. We use our methods to quantify microscopic tau pathology across macroscopic 3D regions of the medial temporal lobe to address a major challenge in the diagnosis of Alzheimer's Disease-the reliance on invasive methods to detect microscopic pathology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从皮尺度病理学到十尺度疾病:利用散射变换和可变折叠处理多尺度数据的图像配准。
神经成像技术的进步使可用数据的规模和类型变得多种多样。有效整合这些数据有望加深对解剖学和疾病的理解,并对诊断和治疗产生影响。目前的计算工具和数学框架往往针对特定的数据类型或规模,仍不足以同时注册这些多种模式的 "图像 "并对随之而来的数据进行统计分析。在此,我们提出了(1)一种使用 "散射变换 "对齐高分辨率和低分辨率图像的配准算法,以及(2)一种基于变体的建模框架,用于计算多尺度数据的三维空间统计。我们使用我们的方法量化内侧颞叶宏观三维区域的微观 tau 病理学,以解决阿尔茨海默病诊断中的一大难题--依赖侵入性方法检测微观病理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data. Multimodal Learning for Clinical Decision Support: 11th International Workshop, ML-CDS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1