Metal-Free Catalysis in C–C Single-Bond Cleavage: Achievements and Prospects

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2022-08-11 DOI:10.1007/s41061-022-00393-7
Mohit L. Deb, B. Shriya Saikia, Iftakur Rahman, Pranjal Kumar Baruah
{"title":"Metal-Free Catalysis in C–C Single-Bond Cleavage: Achievements and Prospects","authors":"Mohit L. Deb,&nbsp;B. Shriya Saikia,&nbsp;Iftakur Rahman,&nbsp;Pranjal Kumar Baruah","doi":"10.1007/s41061-022-00393-7","DOIUrl":null,"url":null,"abstract":"<div><p>This review article emphasizes the C–C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C–C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C–C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C–C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00393-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This review article emphasizes the C–C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C–C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C–C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C–C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳碳单键解理中的无金属催化:成就与展望
本文综述了无金属法有机合成中C-C键的裂解。传统的有机合成主要处理反应性π键和极性σ键。相比之下,无处不在的C-C单键具有固有的稳定性和较低的反应性,这对合成化学家提出了挑战。虽然是惰性的,但这种碳碳单键裂解反应已经引起了合成化学家的注意,因为它们提供了独特和更直接的途径,而且步骤少得多。已有几篇综述文章报道了不同过渡金属对C-C键的活化和裂解。然而,鉴于许多这些金属的高成本和毒性,在无金属条件下开发策略是至关重要的。虽然这方面的研究已经发表了很多文章,但目前还没有综述文章报道。在这里,我们以更简洁的方式讨论从2012年到今天的反应,重点是重要的反应。所有反应的机理也得到了很好的解决。我们相信这篇综述将对从事这一领域工作的读者有所帮助。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1