Machine Learning Model for the Prediction of Hemorrhage in Intensive Care Units.

IF 2.3 Q3 MEDICAL INFORMATICS Healthcare Informatics Research Pub Date : 2022-10-01 Epub Date: 2022-10-31 DOI:10.4258/hir.2022.28.4.364
Sora Kang, Chul Park, Jinseok Lee, Dukyong Yoon
{"title":"Machine Learning Model for the Prediction of Hemorrhage in Intensive Care Units.","authors":"Sora Kang,&nbsp;Chul Park,&nbsp;Jinseok Lee,&nbsp;Dukyong Yoon","doi":"10.4258/hir.2022.28.4.364","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Early hemorrhage detection in intensive care units (ICUs) enables timely intervention and reduces the risk of irreversible outcomes. In this study, we aimed to develop a machine learning model to predict hemorrhage by learning the patterns of continuously changing, real-world clinical data.</p><p><strong>Methods: </strong>We used the Medical Information Mart for Intensive Care databases (MIMIC-III and MIMIC-IV). A recurrent neural network was used to predict severe hemorrhage in the ICU. We developed three machine learning models with an increasing number of input features and levels of complexity: model 1 (11 features), model 2 (18 features), and model 3 (27 features). MIMIC-III was used for model training, and MIMIC-IV was split for internal validation. Using the model with the highest performance, external verification was performed using data from a subgroup extracted from the eICU Collaborative Research Database.</p><p><strong>Results: </strong>We included 5,670 ICU admissions, with 3,150 in the training set and 2,520 in the internal test set. A positive correlation was found between model complexity and performance. As a measure of performance, three models developed with an increasing number of features showed area under the receiver operating characteristic (AUROC) curve values of 0.61-0.94 according to the range of input data. In the subgroup extracted from the eICU database for external validation, an AUROC value of 0.74 was observed.</p><p><strong>Conclusions: </strong>Machine learning models that rely on real clinical data can be used to predict patients at high risk of bleeding in the ICU.</p>","PeriodicalId":12947,"journal":{"name":"Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/de/hir-2022-28-4-364.PMC9672494.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4258/hir.2022.28.4.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Early hemorrhage detection in intensive care units (ICUs) enables timely intervention and reduces the risk of irreversible outcomes. In this study, we aimed to develop a machine learning model to predict hemorrhage by learning the patterns of continuously changing, real-world clinical data.

Methods: We used the Medical Information Mart for Intensive Care databases (MIMIC-III and MIMIC-IV). A recurrent neural network was used to predict severe hemorrhage in the ICU. We developed three machine learning models with an increasing number of input features and levels of complexity: model 1 (11 features), model 2 (18 features), and model 3 (27 features). MIMIC-III was used for model training, and MIMIC-IV was split for internal validation. Using the model with the highest performance, external verification was performed using data from a subgroup extracted from the eICU Collaborative Research Database.

Results: We included 5,670 ICU admissions, with 3,150 in the training set and 2,520 in the internal test set. A positive correlation was found between model complexity and performance. As a measure of performance, three models developed with an increasing number of features showed area under the receiver operating characteristic (AUROC) curve values of 0.61-0.94 according to the range of input data. In the subgroup extracted from the eICU database for external validation, an AUROC value of 0.74 was observed.

Conclusions: Machine learning models that rely on real clinical data can be used to predict patients at high risk of bleeding in the ICU.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重症监护病房出血预测的机器学习模型。
目的:重症监护病房(icu)的早期出血检测能够及时干预并降低不可逆转后果的风险。在这项研究中,我们旨在开发一种机器学习模型,通过学习不断变化的现实世界临床数据的模式来预测出血。方法:我们使用重症监护医学信息市场数据库(MIMIC-III和MIMIC-IV)。应用递归神经网络预测ICU重症出血。我们开发了三个具有越来越多的输入特征和复杂程度的机器学习模型:模型1(11个特征),模型2(18个特征)和模型3(27个特征)。使用MIMIC-III进行模型训练,将MIMIC-IV拆分进行内部验证。使用具有最高性能的模型,使用从eICU协作研究数据库中提取的子组数据进行外部验证。结果:我们纳入了5670例ICU入院患者,其中3150例在训练集中,2520例在内部测试集中。模型复杂度与性能呈正相关。作为性能的衡量指标,根据输入数据的范围,三种特征数量增加的模型在接收工作特征(AUROC)曲线下的面积为0.61-0.94。从eICU数据库中提取用于外部验证的亚组中,AUROC值为0.74。结论:基于真实临床数据的机器学习模型可用于预测ICU高危出血患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare Informatics Research
Healthcare Informatics Research MEDICAL INFORMATICS-
CiteScore
4.90
自引率
6.90%
发文量
44
期刊最新文献
Status and Trends of the Digital Healthcare Industry. Technology and Access to Healthcare with Different Scheduling Systems: A Scoping Review. Associations between Nicotine Dependence, Smartphone Usage Patterns, and Expected Compliance with a Smoking Cessation Application among Smokers. ChatGPT Predicts In-Hospital All-Cause Mortality for Sepsis: In-Context Learning with the Korean Sepsis Alliance Database. Data Market-related Issues in the Medical Field: Accelerating Digital Healthcare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1