PubMed Author-assigned Keyword Extraction (PubMedAKE) Benchmark.

Jiasheng Sheng, Zelalem Gero, Joyce C Ho
{"title":"PubMed Author-assigned Keyword Extraction (PubMedAKE) Benchmark.","authors":"Jiasheng Sheng,&nbsp;Zelalem Gero,&nbsp;Joyce C Ho","doi":"10.1145/3511808.3557675","DOIUrl":null,"url":null,"abstract":"<p><p>With the ever-increasing abundance of biomedical articles, improving the accuracy of keyword search results becomes crucial for ensuring reproducible research. However, keyword extraction for biomedical articles is hard due to the existence of obscure keywords and the lack of a comprehensive benchmark. PubMedAKE is an author-assigned keyword extraction dataset that contains the title, abstract, and keywords of over 843,269 articles from the PubMed open access subset database. This dataset, publicly available on Zenodo, is the largest keyword extraction benchmark with sufficient samples to train neural networks. Experimental results using state-of-the-art baseline methods illustrate the need for developing automatic keyword extraction methods for biomedical literature.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":" ","pages":"4470-4474"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652778/pdf/nihms-1846241.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the ever-increasing abundance of biomedical articles, improving the accuracy of keyword search results becomes crucial for ensuring reproducible research. However, keyword extraction for biomedical articles is hard due to the existence of obscure keywords and the lack of a comprehensive benchmark. PubMedAKE is an author-assigned keyword extraction dataset that contains the title, abstract, and keywords of over 843,269 articles from the PubMed open access subset database. This dataset, publicly available on Zenodo, is the largest keyword extraction benchmark with sufficient samples to train neural networks. Experimental results using state-of-the-art baseline methods illustrate the need for developing automatic keyword extraction methods for biomedical literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PubMed作者指定关键字提取(PubMedAKE)基准。
随着生物医学论文的不断丰富,提高关键词搜索结果的准确性对于确保研究的可重复性至关重要。然而,由于存在较为模糊的关键词和缺乏全面的基准,生物医学论文的关键词提取非常困难。PubMedAKE是一个作者指定的关键字提取数据集,其中包含来自PubMed开放存取子集数据库的超过843,269篇文章的标题、摘要和关键字。这个数据集在Zenodo上公开可用,是最大的关键字提取基准,有足够的样本来训练神经网络。使用最先进的基线方法的实验结果说明了开发生物医学文献自动关键字提取方法的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data. PubMed Author-assigned Keyword Extraction (PubMedAKE) Benchmark. From Product Searches to Conversational Agents for E-Commerce Non-Visual Accessibility Assessment of Videos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1