Anastasia A. Makarova, Egor N. Veko, Alexey A. Polilov
{"title":"Metamorphosis and denucleation of the brain in the miniature wasp Megaphragma viggianii (Hymenoptera: Trichogrammatidae)","authors":"Anastasia A. Makarova, Egor N. Veko, Alexey A. Polilov","doi":"10.1016/j.asd.2022.101200","DOIUrl":null,"url":null,"abstract":"<div><p><span>Holometabolan<span> brains<span> undergo structural and allometric changes and complex reorganizations during metamorphosis. In minute egg parasitoids<span>, brain formation is shifted to the late larva and young pupa, due to extreme de-embryonization. The brains of </span></span></span></span><em>Megaphragma</em> wasps undergo denucleation, the details of which remained unknown. We describe the morphological and volumetric changes in the brain of <em>Megaphragma viggianii</em><span> (Trichogrammatidae) during pupal development<span> with emphasis on the lysis of nuclei and show that the absolute and relative volume of the brain decrease by a factor of 5 from prepupa to adult at the expense of the cell body rind. The first foci of lysis appear during early pupal development, but most nuclei (up to 97%) are lost between pharate adult and adult. The first signs of lysis (destruction of the nuclear envelopes) occur in pupae with red eyes. The number of lysis foci (organelle destruction and increasing number of lysosomes and degree of chromatin compaction) strongly increases in pupae with black eyes. The cell body rind volume strongly decreases during pupal development (in larger insects it increases slightly or remains unchanged). Elucidation of the lysis of nuclei in neurons and of the functioning of an anucleate brain is an important objective for neuroscience.</span></span></p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467803922000615","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Holometabolan brains undergo structural and allometric changes and complex reorganizations during metamorphosis. In minute egg parasitoids, brain formation is shifted to the late larva and young pupa, due to extreme de-embryonization. The brains of Megaphragma wasps undergo denucleation, the details of which remained unknown. We describe the morphological and volumetric changes in the brain of Megaphragma viggianii (Trichogrammatidae) during pupal development with emphasis on the lysis of nuclei and show that the absolute and relative volume of the brain decrease by a factor of 5 from prepupa to adult at the expense of the cell body rind. The first foci of lysis appear during early pupal development, but most nuclei (up to 97%) are lost between pharate adult and adult. The first signs of lysis (destruction of the nuclear envelopes) occur in pupae with red eyes. The number of lysis foci (organelle destruction and increasing number of lysosomes and degree of chromatin compaction) strongly increases in pupae with black eyes. The cell body rind volume strongly decreases during pupal development (in larger insects it increases slightly or remains unchanged). Elucidation of the lysis of nuclei in neurons and of the functioning of an anucleate brain is an important objective for neuroscience.
期刊介绍:
Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.