首页 > 最新文献

Arthropod Structure & Development最新文献

英文 中文
Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae) 蝎蝇(Mecoptera: Panorpidae)幼虫直肠的超微结构。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101383

The rectum is an important part of the alimentary canal responsible for ion and water reabsorption of insects. However, it has rarely been studied in the larvae of Panorpidae, the largest family in Mecoptera. Here, we investigated the ultrastructure of larval rectum of the scorpionfly Panorpa liui Hua, 1997 using light and transmission electron microscopy. The rectum comprises tracheal muscular layers, connective tissue, non-cellular basal lamina, junctional cells, rectal epithelium, cuticle with irregular outlines, and a central lumen. The rectal epithelium is infolded to form six longitudinal rectal folds, which are distinct from rectal pads or papillae. In each rectal fold, the apical and basal plasma membranes of epithelial cells are infolded and the lateral plasma membranes form septate and scalariform junctions. The well-developed rectal folds are postulated to be closely associated with reabsorption of ions and water in the larvae. The associations of rectal folds with larval behaviors are briefly discussed in Mecoptera.

直肠是消化道的重要组成部分,负责昆虫的离子和水分重吸收。然而,对鳞翅目昆虫中最大的科--蝎蝇科幼虫直肠的研究却很少。在此,我们利用光显微镜和透射电子显微镜研究了蝎蝇(Panorpa liui Hua,1997 年)幼虫直肠的超微结构。直肠由气管肌肉层、结缔组织、非细胞基底层、连接细胞、直肠上皮、轮廓不规则的角质层和中央管腔组成。直肠上皮内折形成六个纵向的直肠褶皱,与直肠垫或直肠乳头不同。在每个直肠褶皱中,上皮细胞的顶端和基底浆膜内折,外侧浆膜形成隔膜和鳞状连接。据推测,发达的直肠褶皱与幼虫重吸收离子和水分密切相关。直肠褶皱与幼虫行为的关系在《甲壳动物》中有简要论述。
{"title":"Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae)","authors":"","doi":"10.1016/j.asd.2024.101383","DOIUrl":"10.1016/j.asd.2024.101383","url":null,"abstract":"<div><p>The rectum is an important part of the alimentary canal responsible for ion and water reabsorption of insects. However, it has rarely been studied in the larvae of Panorpidae, the largest family in Mecoptera. Here, we investigated the ultrastructure of larval rectum of the scorpionfly <em>Panorpa liui</em> Hua, 1997 using light and transmission electron microscopy. The rectum comprises tracheal muscular layers, connective tissue, non-cellular basal lamina, junctional cells, rectal epithelium, cuticle with irregular outlines, and a central lumen. The rectal epithelium is infolded to form six longitudinal rectal folds, which are distinct from rectal pads or papillae. In each rectal fold, the apical and basal plasma membranes of epithelial cells are infolded and the lateral plasma membranes form septate and scalariform junctions. The well-developed rectal folds are postulated to be closely associated with reabsorption of ions and water in the larvae. The associations of rectal folds with larval behaviors are briefly discussed in Mecoptera.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea) 五种单蜂(膜翅目,Apoidea)触角感觉器的形态和分布。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101382

Solitary bees play a crucial role in ecological systems, contributing to the pollination of crops and wild plants. All females are reproductive, and their habitat requirements include nesting sites, food resources and nesting materials. Although these activities require the ability to detect biotic and abiotic stimuli in the environment, the sensory system of these species is poorly studied. In this study, the antennal sensilla of five solitary bee species belonging to three Apoidea families were investigated using scanning electron microscopy. These included two species of stem-nesting bees, Ceratina cucurbitina (Rossi, 1792) (Apidae) and Osmia scutellaris (Morawitz, 1868) (Megachilidae), and three species of ground-nesting bees, Lasioglossum brevicorne (Schenck, 1870), Lasioglossum leucozonium (Schrank, 1781), and Lasioglossum villosulum (Kirby, 1802) (Halictidae). Thirteen different types of antennal sensilla were identified in females based on their morphological characteristics: sensilla trichodea (subtypes STI, II, III), chaetica (subtypes SchI, II), basiconica (subtypes SBI, II, III, IV), placodea, campaniformia, coeloconica, and ampullacea. Their functional role was discussed and morphology was compared among the species and within the antennal segments in each species. The results provide a baseline for further physiological and behavioural studies to determine the role of antennal sensilla in habitat selection, food search and nesting site selection.

独居蜜蜂在生态系统中发挥着至关重要的作用,为农作物和野生植物授粉。所有雌蜂都具有生殖能力,它们对栖息地的要求包括筑巢场所、食物资源和筑巢材料。虽然这些活动需要探测环境中生物和非生物刺激的能力,但对这些物种的感觉系统研究甚少。本研究利用扫描电子显微镜对属于三个Apoidea科的五个独居蜂种的触角感觉器进行了研究。这些物种包括两种茎巢蜜蜂:Ceratina cucurbitina (Rossi, 1792) (Apidae) 和 Osmia scutellaris (Morawitz, 1868) (Megachilidae) 以及三种地巢蜜蜂:Lasioglossum brevicorne (Schenck, 1870), Lasioglossum leucozonium (Schrank, 1781) 和 Lasioglossum villosulum (Kirby, 1802) (Halictidae) 。根据雌性触角感觉器的形态特征,确定了 13 种不同类型的触角感觉器:毛状感觉器(STI、II、III 亚型)、皴裂感觉器(SchI、II 亚型)、基本感觉器(SBI、II、III、IV 亚型)、placentodea、campaniformia、coeloconica 和 ampullacea。对它们的功能作用进行了讨论,并比较了不同物种之间以及每个物种触角节内的形态。研究结果为进一步的生理和行为研究提供了基础,以确定触角感觉器在生境选择、食物搜寻和筑巢地点选择中的作用。
{"title":"Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea)","authors":"","doi":"10.1016/j.asd.2024.101382","DOIUrl":"10.1016/j.asd.2024.101382","url":null,"abstract":"<div><p>Solitary bees play a crucial role in ecological systems, contributing to the pollination of crops and wild plants. All females are reproductive, and their habitat requirements include nesting sites, food resources and nesting materials. Although these activities require the ability to detect biotic and abiotic stimuli in the environment, the sensory system of these species is poorly studied. In this study, the antennal sensilla of five solitary bee species belonging to three Apoidea families were investigated using scanning electron microscopy. These included two species of stem-nesting bees, <em>Ceratina cucurbitina</em> (Rossi, 1792) (Apidae) and <em>Osmia scutellaris</em> (Morawitz, 1868) (Megachilidae), and three species of ground-nesting bees, <em>Lasioglossum brevicorne</em> (Schenck, 1870), <em>Lasioglossum leucozonium</em> (Schrank, 1781), and <em>Lasioglossum villosulum</em> (Kirby, 1802) (Halictidae). Thirteen different types of antennal sensilla were identified in females based on their morphological characteristics: sensilla trichodea (subtypes STI, II, III), chaetica (subtypes SchI, II), basiconica (subtypes SBI, II, III, IV), placodea, campaniformia, coeloconica, and ampullacea. Their functional role was discussed and morphology was compared among the species and within the antennal segments in each species. The results provide a baseline for further physiological and behavioural studies to determine the role of antennal sensilla in habitat selection, food search and nesting site selection.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coevolution of spermatozoa and spermathecae in Lonchopteridae (Diptera) 龙蝇科(双翅目)精子和精囊的共同进化
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101385

Across the species of spear-winged flies (Diptera: Lonchopteridae) there is a remarkable variation in size of the female reproductive tract, especially of the spermathecae. In this family there are two tubular spermathecae, which are divided into four morphologically and histologically distinct sections of different lengths and functions. The dimensions of the spermathecae and their individual sections were examined across 11 Lonchoptera species and related to the dimensions of the respective spermatozoa. 3D reconstructions from serial sectioning made it possible to include the volume in these considerations, which is a new approach in this context. Results show that the spermathecae are always longer than the respective spermatozoa. There is a highly significant positive linear correlation between the length of the spermatozoa and the length of the spermathecae in total as well as some of the individual spermathecal sections, suggesting a coevolution of these characters. Moreover, the volume of the spermathecae is much larger in those species with longer and more voluminous spermatozoa, but the volume increase is not sufficient to keep constant the number of spermatozoa that fit within. The observed patterns are discussed with respect to their functional and evolutionary implications, including a new hypothesis on the possible selective advantage of increased spermatozoon length.

矛翅蝇(双翅目:龙蝶科)的雌性生殖道,尤其是精巢的大小差异显著。矛翅蝇科有两个管状精巢,在形态学和组织学上分为四个不同的部分,长度和功能也各不相同。我们研究了 11 个龙蝶科物种的精巢及其各个部分的尺寸,并将其与各自精子的尺寸联系起来。通过连续切片进行三维重建,可以将体积纳入考虑范围,这在这方面是一种新方法。结果表明,精囊总是比相应的精子长。精子的长度与精囊的总长度以及部分精囊切片的长度之间存在非常明显的正线性相关,这表明这些特征是共同进化的。此外,在精子较长、体积较大的物种中,精囊的体积要大得多,但体积的增加不足以使精囊内的精子数量保持不变。本文讨论了观察到的模式对功能和进化的影响,包括关于精子长度增加可能带来的选择性优势的新假设。
{"title":"Coevolution of spermatozoa and spermathecae in Lonchopteridae (Diptera)","authors":"","doi":"10.1016/j.asd.2024.101385","DOIUrl":"10.1016/j.asd.2024.101385","url":null,"abstract":"<div><p>Across the species of spear-winged flies (Diptera: Lonchopteridae) there is a remarkable variation in size of the female reproductive tract, especially of the spermathecae. In this family there are two tubular spermathecae, which are divided into four morphologically and histologically distinct sections of different lengths and functions. The dimensions of the spermathecae and their individual sections were examined across 11 <em>Lonchoptera</em> species and related to the dimensions of the respective spermatozoa. 3D reconstructions from serial sectioning made it possible to include the volume in these considerations, which is a new approach in this context. Results show that the spermathecae are always longer than the respective spermatozoa. There is a highly significant positive linear correlation between the length of the spermatozoa and the length of the spermathecae in total as well as some of the individual spermathecal sections, suggesting a coevolution of these characters. Moreover, the volume of the spermathecae is much larger in those species with longer and more voluminous spermatozoa, but the volume increase is not sufficient to keep constant the number of spermatozoa that fit within. The observed patterns are discussed with respect to their functional and evolutionary implications, including a new hypothesis on the possible selective advantage of increased spermatozoon length.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1467803924000550/pdfft?md5=e3e1b66572e0381459443308d38ece77&pid=1-s2.0-S1467803924000550-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomics investigation of the potentially invasive firefly Photinus signaticollis Blanchard 1845: Complete mitochondrial genome, multigene phylogenies and obtention of the luciferase and luciferin-regenerating genes
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101384

A genomic investigation of the potentially invasive firefly Photinus signaticollis Blanchard1845 has been performed and led to the obtention of its complete 16,411 bp long mitochondrial genome. The mitogenome encodes 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes. With other species of the Photinus complex it shares several premature terminations of some protein-coding genes and also an overlap between cox1 and tRNA-Tyr. By data-mining, the complete luciferase and luciferin-regenerating genes were also identified from the contigs file and compared with existing data, in addition to WG and CAD, two genes used in pioneering phylogenetic studies on fireflies. Three maximum likelihood phylogenies were derived from all these data. The multigene phylogeny based on all mitochondrial protein-coding genes strongly associates P. signaticollis with Photinus pyralis Linnaeus, 1758 and the lantern-less daily “winter firefly”, Photinus corruscus Linnaeus, 1767. A second phylogeny based on concatenated sequences of the cox1, WG and CAD genes positions P. signaticollis as a sister clade to a large cluster of species containing the 7 sub-groups previously evidenced among the North American species of the Photinus complex. A third phylogeny based on the amino-acid sequence of the luciferase protein associates P. signaticollis to Photinus scintillans. The analysis presented here will most certainly help to come to a better understanding of the very complex inter-relationships in the very large Photinus genus.

对具有潜在入侵性的萤火虫 Photinus signaticollis Blanchard1845 进行了基因组研究,并获得了其完整的长达 16,411 bp 的线粒体基因组。有丝分裂基因组编码 13 个蛋白质编码基因、22 个 tRNA 基因和 2 个 rRNA 基因。与 Photinus 复合体的其他物种一样,它的一些蛋白质编码基因也有一些过早终止,而且 cox1 和 tRNA-Tyr 之间也有重叠。通过数据挖掘,还从等位基因文件中确定了完整的荧光素酶基因和荧光素再生基因,并与现有数据进行了比较。从所有这些数据中得出了三个最大似然系统发生。基于所有线粒体蛋白编码基因的多基因系统发生将 signaticollis 与林奈(Photinus pyralis Linnaeus),1758 年和无灯笼的日常 "冬萤"(Photinus corruscus Linnaeus,1767 年)紧密联系在一起。基于 cox1、WG 和 CAD 基因序列的第二个系统发生将 signaticollis 定位为一个大型物种集群的姊妹支系,该物种集群包含先前在 Photinus 复合体北美物种中发现的 7 个亚群。基于荧光素酶蛋白氨基酸序列的第三个系统发育将符号鳉与闪烁鳉联系在一起。本文的分析无疑将有助于更好地了解庞大的Photinus属中非常复杂的相互关系。
{"title":"Genomics investigation of the potentially invasive firefly Photinus signaticollis Blanchard 1845: Complete mitochondrial genome, multigene phylogenies and obtention of the luciferase and luciferin-regenerating genes","authors":"","doi":"10.1016/j.asd.2024.101384","DOIUrl":"10.1016/j.asd.2024.101384","url":null,"abstract":"<div><p>A genomic investigation of the potentially invasive firefly <em>Photinus signaticollis</em> Blanchard1845 has been performed and led to the obtention of its complete 16,411 bp long mitochondrial genome. The mitogenome encodes 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes. With other species of the <em>Photinus</em> complex it shares several premature terminations of some protein-coding genes and also an overlap between <em>cox1</em> and <em>tRNA-Tyr</em>. By data-mining, the complete luciferase and luciferin-regenerating genes were also identified from the contigs file and compared with existing data, in addition to <em>WG</em> and CAD, two genes used in pioneering phylogenetic studies on fireflies. Three maximum likelihood phylogenies were derived from all these data. The multigene phylogeny based on all mitochondrial protein-coding genes strongly associates <em>P. signaticollis</em> with <em>Photinus pyralis</em> Linnaeus, 1758 and the lantern-less daily “winter firefly”, <em>Photinus corruscus</em> Linnaeus, 1767. A second phylogeny based on concatenated sequences of the <em>cox1</em>, <em>WG</em> and <em>CAD</em> genes positions <em>P. signaticollis</em> as a sister clade to a large cluster of species containing the 7 sub-groups previously evidenced among the North American species of the <em>Photinus</em> complex. A third phylogeny based on the amino-acid sequence of the luciferase protein associates <em>P. signaticollis</em> to <em>Photinus scintillans.</em> The analysis presented here will most certainly help to come to a better understanding of the very complex inter-relationships in the very large <em>Photinus</em> genus.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology of the sting apparatus in sapygid wasps of the subfamily Sapyginae (Hymenoptera: Sapygidae) 鞘翅目黄蜂亚科(膜翅目:鞘蜂科)的螫器形态学
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-08-23 DOI: 10.1016/j.asd.2024.101381

Sapygidae is a small family of Aculeata (Hymenoptera), which is divided into two subfamilies Fedtschenkiinae and Sapyginae. The morphology of the skeleton of the sting apparatus in some European species of Sapyginae, which are kleptoparasites of wild bees from the families Megachilidae, Apidae and Colletidae, was examined. Significant differences in its skeletal structure were noted between Sapygina decemguttata and representatives of the genera Sapyga and Monosapyga. The sting of Sapygina belongs to the decurved type, while Sapyga and Monosapyga have a sting close to the coiled type. A comparison of the structure of the skeletons of the sting apparatuses of Sapygina and Sapyga with that of Fedtschenkia (according to other authors) was made. The similarity of the structure of the sting apparatuses of Sapygina and Fedtschenkia was noted. The possibility of using the Sapyginae sting as an ovipositor is discussed.

刺蜂科(Sapygidae)是膜翅目(Aculeata)的一个小科,分为 Fedtschenkiinae 和 Sapyginae 两个亚科。欧洲的一些蜜蜂种是蜜蜂科、鳞蜂科和疣蜂科野生蜜蜂的盗食性寄生虫,研究人员对这些蜜蜂种的螫器骨骼形态进行了研究。发现 Sapygina decemguttata 与 Sapyga 属和 Monosapyga 属的代表物种在骨骼结构上存在显著差异。Sapygina 的螫针属于下弯型,而 Sapyga 和 Monosapyga 的螫针接近于盘绕型。我们将 Sapygina 和 Sapyga 的刺器骨骼结构与 Fedtschenkia 的刺器骨骼结构(根据其他作者的说法)进行了比较。注意到 Sapygina 和 Fedtschenkia 的刺器结构相似。讨论了将 Sapyginae 的螫针用作产卵器的可能性。
{"title":"Morphology of the sting apparatus in sapygid wasps of the subfamily Sapyginae (Hymenoptera: Sapygidae)","authors":"","doi":"10.1016/j.asd.2024.101381","DOIUrl":"10.1016/j.asd.2024.101381","url":null,"abstract":"<div><p>Sapygidae is a small family of Aculeata (Hymenoptera), which is divided into two subfamilies Fedtschenkiinae and Sapyginae. The morphology of the skeleton of the sting apparatus in some European species of Sapyginae, which are kleptoparasites of wild bees from the families Megachilidae, Apidae and Colletidae, was examined. Significant differences in its skeletal structure were noted between <em>Sapygina decemguttata</em> and representatives of the genera <em>Sapyga</em> and <em>Monosapyga</em>. The sting of <em>Sapygina</em> belongs to the decurved type, while <em>Sapyga</em> and <em>Monosapyga</em> have a sting close to the coiled type. A comparison of the structure of the skeletons of the sting apparatuses of <em>Sapygina</em> and <em>Sapyga</em> with that of <em>Fedtschenkia</em> (according to other authors) was made. The similarity of the structure of the sting apparatuses of <em>Sapygina</em> and <em>Fedtschenkia</em> was noted. The possibility of using the Sapyginae sting as an ovipositor is discussed.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure of a gilled stonefly larva from the mid-Cretaceous Kachin amber 白垩纪中期克钦琥珀中有鳃石蝇幼虫的结构。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-08-10 DOI: 10.1016/j.asd.2024.101380

Perlidae stands as the most diverse family within Plecoptera, with evidence suggesting possible adaptation to warmer aquatic environments. Tracheal gills are hypothesized to have played a pivotal role in this radiation process. This study presents the description of a fossilized stonefly larva with gills, preserved as a fresh exuvia in mid-Cretaceous Kachin amber from northern Myanmar. The larva was classified within the family Perlidae based on distinctive morphological traits, including toothed lacinia and sharp-cusped mandibles, slender palps, glossae shorter than rounded paraglossae, and highly branched gills on the sides and ventral surface of thoracic segments. Additionally, the presence of a transverse, sparse, and irregular setal row on the occiput further indicates classification within the subfamily Acroneuriinae. Notably, the fossilized larva displays striking similarities in gill morphology and distribution to certain extant members within Perlidae, suggesting that these gill structures have an advantage in various aquatic habitats.

鲈形目是褶翅目中最多样化的科,有证据表明它们可能适应了较温暖的水生环境。据推测,气管鳃在这一辐射过程中起到了关键作用。本研究描述了缅甸北部白垩纪中期克钦琥珀中保存的一种带气管鳃的石蝇幼虫化石。根据其独特的形态特征,包括齿状裂口和尖尖的下颚、细长的上颚、短于圆形副颚的光泽以及胸节两侧和腹面高度分枝的鳃,该幼虫被归类为鲈形目石蝇科。此外,枕部有一排横向、稀疏且不规则的刚毛,这进一步表明它们属于 Acroneuriinae 亚科。值得注意的是,化石中的幼虫在鳃的形态和分布上与鲈形目中的某些现生成员有着惊人的相似之处,这表明这些鳃结构在不同的水生生境中具有优势。
{"title":"The structure of a gilled stonefly larva from the mid-Cretaceous Kachin amber","authors":"","doi":"10.1016/j.asd.2024.101380","DOIUrl":"10.1016/j.asd.2024.101380","url":null,"abstract":"<div><p>Perlidae stands as the most diverse family within Plecoptera, with evidence suggesting possible adaptation to warmer aquatic environments. Tracheal gills are hypothesized to have played a pivotal role in this radiation process. This study presents the description of a fossilized stonefly larva with gills, preserved as a fresh exuvia in mid-Cretaceous Kachin amber from northern Myanmar. The larva was classified within the family Perlidae based on distinctive morphological traits, including toothed lacinia and sharp-cusped mandibles, slender palps, glossae shorter than rounded paraglossae, and highly branched gills on the sides and ventral surface of thoracic segments. Additionally, the presence of a transverse, sparse, and irregular setal row on the occiput further indicates classification within the subfamily Acroneuriinae. Notably, the fossilized larva displays striking similarities in gill morphology and distribution to certain extant members within Perlidae, suggesting that these gill structures have an advantage in various aquatic habitats.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative microscopic anatomy of Schizomida – 2. The rostrosoma and the pharyngeal suction pump 裂头蚴显微解剖比较 - 2.喙瘤和咽吸泵。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.asd.2024.101372

This paper tests hypotheses of independent parallel evolution of the rostrosoma among euchelicerate taxa by analyzing the microscopic anatomy and histology of the rostrosoma of Uropygi (Schizomida and Thelyphonida) and comparing it with the morphology of the snout region in other euchelicerates. The study employs analysis of multiple histological serial sections, μCT-imaging, and graphical as well as computer-based 3D reconstruction. Results of the study are that Thelyphonida and Schizomida share the same morphology of the rostrosoma. The rostrosoma of both groups contains a unique arrangement of musculature that is functionally interpreted as pre-oral suction pump. This is followed by a pharyngeal suction pump. The muscles of the pharyngeal suction pump attach to the epistome and the epipharyngeal sclerite. Neither Schizomida nor Thelyphonida possess a postcerebral suction pump as reported earlier. The microscopic anatomy of the rostrosoma of both taxa is unique and does not compare with any of the other euchelicerates, thus supporting the idea of independent evolutionary origin of the rostrosoma. Thelyphonida, Amblypygi and Scorpiones share the occurrence of a large epipharyngeal/epistomal sclerite with associated musculature, which is a feature that lines up with the Arachnopulmonata concept. A comparison with all Euchelicerata taxa shows that the snout region is formed by homologous morphological elements but the specific arrangement, additions and reductions shape the formation of the rostrosoma, so that parallel evolution of homologous parts of the arachnid ground pattern can be assumed that has formed those elements into convergent morphologies.

本文通过分析 Uropygi(裂齿目和蝶齿目)喙瘤的显微解剖学和组织学,并将其与其它欧鼠类的吻区形态进行比较,检验了欧鼠类喙瘤独立平行进化的假设。研究采用了多个组织学序列切片分析、μCT成像、图形和计算机三维重建等方法。研究结果表明,Thelyphonida 和 Schizomida 的喙瘤形态相同。这两个类群的喙瘤都包含独特的肌肉组织排列,在功能上可解释为前口吸泵。随后是咽吸泵。咽吸泵的肌肉附着在会厌和会厌硬骨上。如前所述,裂头虫和蝶形虫都没有脑后吸泵。这两个类群的喙瘤的显微解剖结构都很独特,与其他任何一种真口纲动物都无法相比,因此支持喙瘤是独立进化起源的观点。Thelyphonida、Amblypygi 和 Scorpiones 都有一个大的会咽/肛门硬骨和相关的肌肉组织,这一特征与 Arachnopulmonata 的概念一致。与所有 Euchelicerata 类群的比较表明,吻区是由同源的形态元素形成的,但具体的排列、增加和减少形成了喙瘤,因此可以假定蛛形纲地面模式同源部分的平行进化将这些元素形成了趋同的形态。
{"title":"Comparative microscopic anatomy of Schizomida – 2. The rostrosoma and the pharyngeal suction pump","authors":"","doi":"10.1016/j.asd.2024.101372","DOIUrl":"10.1016/j.asd.2024.101372","url":null,"abstract":"<div><p>This paper tests hypotheses of independent parallel evolution of the rostrosoma among euchelicerate taxa by analyzing the microscopic anatomy and histology of the rostrosoma of Uropygi (Schizomida and Thelyphonida) and comparing it with the morphology of the snout region in other euchelicerates. The study employs analysis of multiple histological serial sections, μCT-imaging, and graphical as well as computer-based 3D reconstruction. Results of the study are that Thelyphonida and Schizomida share the same morphology of the rostrosoma. The rostrosoma of both groups contains a unique arrangement of musculature that is functionally interpreted as pre-oral suction pump. This is followed by a pharyngeal suction pump. The muscles of the pharyngeal suction pump attach to the epistome and the epipharyngeal sclerite. Neither Schizomida nor Thelyphonida possess a postcerebral suction pump as reported earlier. The microscopic anatomy of the rostrosoma of both taxa is unique and does not compare with any of the other euchelicerates, thus supporting the idea of independent evolutionary origin of the rostrosoma. Thelyphonida, Amblypygi and Scorpiones share the occurrence of a large epipharyngeal/epistomal sclerite with associated musculature, which is a feature that lines up with the Arachnopulmonata concept. A comparison with all Euchelicerata taxa shows that the snout region is formed by homologous morphological elements but the specific arrangement, additions and reductions shape the formation of the rostrosoma, so that parallel evolution of homologous parts of the arachnid ground pattern can be assumed that has formed those elements into convergent morphologies.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1467803924000422/pdfft?md5=6841998e48ffd80f99c7ea7aa7459177&pid=1-s2.0-S1467803924000422-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved exopodite morphology in three-dimensionally preserved trilobites from the Walcott-Rust Quarry (Mohawkian, Ordovician) of New York, USA 美国纽约沃尔科特-拉斯特采石场(莫霍肯,奥陶纪)三维保存的三叶虫中保存的外胚层形态
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.asd.2024.101371

Trilobites were extremely abundant and diverse euarthropods from the Paleozoic Era, but our understanding of their non-biomineralized ventral morphology is restricted to localities with exceptional fossil preservation. The Ordovician-aged Walcott-Rust Quarry in New York State preserves exceptional trilobite fossils as calcite casts in three-dimensions with little to no deformation, providing a valuable view of their ventral morphology. Appendages of the two most abundant trilobites, Ceraurus pleurexanthemus and Flexicalymene senaria, have been known for over 150 years but the original preparation of the specimens as thin sections has led to significant disagreement about their anatomy. Ceraruus pleurexanthemus is more abundant in the thin section collections (157 specimens) and features nearly complete appendages including a subtriangular protopodite with stud-like gnathobases along the medial edge and long endites ventrally. The exopodite consists of a long proximal article bearing dumbbell-shaped lamellae (in cross section) and a shorter distal article, closely resembling that of the cheirurid Anacheirurus adserai from the Lower Ordovician Fezouata Shale biota of Morocco. The appendages of F. senaria (37 specimens) are less well preserved. The exopodite bears up to 40 dumbbell shaped lamellae (in cross section) and is proportionally longer relative to the endopodite of C. pleurexanthemus. The close morphological similarity observed between the exopodites of C. pleurexanthemus and A. adersai, despite originating from paleogeographically distant latitudes and temporally separated by over ca. 20 million years, shows that the proposed “Cambrian type” exopodite persisted through the majority of the Ordovician. The morphology of the endopodites between C. pleurexanthemus and A. adersai is more variable when compared to the organization of the exopodites, may reflect selective pressures from locomotion and feeding between these species.

三叶虫是古生代数量极其丰富、种类极其繁多的类地行星,但我们对其非生物矿化腹面形态的了解仅限于化石保存特别完好的地方。纽约州奥陶纪时期的沃尔科特-拉斯特采石场(Walcott-Rust Quarry)以几乎没有变形的三维方解石铸件形式保存了特殊的三叶虫化石,为我们了解它们的腹部形态提供了宝贵的视角。150 多年前,人们就已经知道两种最丰富的三叶虫--Ceraurus pleurexanthemus 和 Flexicalymene senaria--的附肢,但由于最初将标本制作成薄片,人们对它们的解剖结构存在很大分歧。Ceraruus pleurexanthemus 在薄片标本中的数量较多(157 个标本),其特征是几乎完整的附肢,包括一个近三角形的原脚节,内侧边缘有螺柱状的钩喙,腹侧有长的内齿。外脚节由一个长的近端节和一个较短的远端节组成,近端节带有哑铃状薄片(横截面),与摩洛哥下奥陶世费祖阿塔页岩生物群中的螯足类 Anacheirurus adserai 非常相似。F. senaria(37 个标本)的附肢保存较差。外节上有多达 40 个哑铃状薄片(横截面),与 C. pleurexanthemus 的内节相比,外节的比例长度更长。尽管 C. pleurexanthemus 和 A. adersai 的外脚节起源于古地理上遥远的纬度地区,而且在时间上相隔约 2000 万年,但它们的外脚节在形态上却非常相似。这表明所提出的 "寒武纪类型 "外蜕皮一直持续到奥陶纪的大部分时期。C. pleurexanthemus 和 A. adersai 之间的内足器形态与外足器的组织相比变化更大,这可能反映了这些物种之间运动和取食的选择性压力。
{"title":"Conserved exopodite morphology in three-dimensionally preserved trilobites from the Walcott-Rust Quarry (Mohawkian, Ordovician) of New York, USA","authors":"","doi":"10.1016/j.asd.2024.101371","DOIUrl":"10.1016/j.asd.2024.101371","url":null,"abstract":"<div><p>Trilobites were extremely abundant and diverse euarthropods from the Paleozoic Era, but our understanding of their non-biomineralized ventral morphology is restricted to localities with exceptional fossil preservation. The Ordovician-aged Walcott-Rust Quarry in New York State preserves exceptional trilobite fossils as calcite casts in three-dimensions with little to no deformation, providing a valuable view of their ventral morphology. Appendages of the two most abundant trilobites, <em>Ceraurus pleurexanthemus</em> and <em>Flexicalymene senaria</em>, have been known for over 150 years but the original preparation of the specimens as thin sections has led to significant disagreement about their anatomy. <em>Ceraruus pleurexanthemus</em> is more abundant in the thin section collections (157 specimens) and features nearly complete appendages including a subtriangular protopodite with stud-like gnathobases along the medial edge and long endites ventrally. The exopodite consists of a long proximal article bearing dumbbell-shaped lamellae (in cross section) and a shorter distal article, closely resembling that of the cheirurid <em>Anacheirurus adserai</em> from the Lower Ordovician Fezouata Shale biota of Morocco. The appendages of <em>F. senaria</em> (37 specimens) are less well preserved. The exopodite bears up to 40 dumbbell shaped lamellae (in cross section) and is proportionally longer relative to the endopodite of <em>C. pleurexanthemus</em>. The close morphological similarity observed between the exopodites of <em>C. pleurexanthemus</em> and <em>A. adersai</em>, despite originating from paleogeographically distant latitudes and temporally separated by over ca. 20 million years, shows that the proposed “Cambrian type” exopodite persisted through the majority of the Ordovician. The morphology of the endopodites between <em>C. pleurexanthemus</em> and <em>A. adersai</em> is more variable when compared to the organization of the exopodites, may reflect selective pressures from locomotion and feeding between these species.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative microscopic anatomy of Schizomida – 1. Segmental axial musculature and body organization 裂头畸形的显微比较解剖 - 1. 节轴向肌肉组织和身体组织。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-07-01 DOI: 10.1016/j.asd.2024.101373

Schizomida is an enigmatic group of arachnids that is traditionally considered the dwarfed sister to Thelyphonida. Schizomids are of interest for evolutionary morphology, because they show a number of features like a tripartite prosoma dorsal shield (pro-, meso-, metapeltidium), formation of three sterna, a complex prosoma–opisthosoma transition and a metasoma. By analyzing the body organization of Schizomida and comparing it to Thelyphonida and other arachnids, this article provides evidence for independent evolution of some of these features in Schizomida. This supports the idea that, among arachnids, multiple and independent evolutionary pathways have resulted in similar morphologies, that conventionally have been considered shared similarities. – The analysis of serial microscopic sections and μCT-imaging of segmental indicator muscles of the prosoma evidences that the propeltidium covers prosoma segments 0–4, and the metapeltidium covers segments 5 and 6. The mesopeltidium is a dorsolateral sclerotization of the pleural membrane, not assigned to a segment, and therefore not a tergite. The topographic association of segmental musculature and sclerites of the tripartite dorsum of the prosoma differs from other taxa with such external body organization, e.g., Palpigradi and Solifugae, suggesting independent evolutionary origin. – The prosoma–opisthosoma transition integrates the first opisthosoma segment into the prosoma. The sternite of the first opisthosoma segment forms the metasternum between the coxae of the fourth pair of walking legs. The morphology of the prosoma–opisthosoma transition is similar to Uropygi and Amblypygi, but is less complex. – The morphology of the metasoma (opisthosoma segments X-XII) of Schizomida and Thelyphonida differs from that of all other arachnids carrying a metasoma, thus providing support for multiple independent evolutionary origins of metasomata.

蛛形纲(Schizomida)是一个神秘的类群,传统上被认为是蝶形纲(Thelyphonida)的侏儒姊妹。裂腹虫对进化形态学很感兴趣,因为它们表现出许多特征,如三方前体背盾(前体、中体、后体)、形成三个立体体、复杂的前体-上体过渡和中体。本文通过分析裂臀目动物的身体组织结构,并将其与Thelyphonida和其他蛛形纲动物进行比较,为这些特征在裂臀目动物中的独立演化提供了证据。这支持了一种观点,即在蛛形纲动物中,多种独立的进化途径导致了相似的形态,而这些形态在传统上被认为是共同的相似性。- 对前体的连续显微切片和节指示肌的μCT成像分析表明,前eltidium覆盖前体第0-4节,而metapeltidium覆盖第5和第6节。中盾是胸膜背侧的硬结,不属于一个节段,因此也不属于一个节片。前体三方背板的节间肌肉组织和硬骨的地形关联不同于其他具有这种体外组织的类群,如 Palpigradi 和 Solifugae,这表明其起源是独立进化的。- 前口-后口的过渡将第一乳突节与前口结合在一起。开口颚第一节的胸骨在第四对步行腿的跗节之间形成了尾骨。前体腔-上体腔过渡的形态与乌罗皮亚目和安布里皮亚目相似,但没有那么复杂。- Schizomida和Thelyphonida的副瘤形态(副瘤第X-XII节)不同于所有其他带有副瘤的蛛形纲,从而为副瘤的多个独立进化起源提供了支持。
{"title":"Comparative microscopic anatomy of Schizomida – 1. Segmental axial musculature and body organization","authors":"","doi":"10.1016/j.asd.2024.101373","DOIUrl":"10.1016/j.asd.2024.101373","url":null,"abstract":"<div><p>Schizomida is an enigmatic group of arachnids that is traditionally considered the dwarfed sister to Thelyphonida. Schizomids are of interest for evolutionary morphology, because they show a number of features like a tripartite prosoma dorsal shield (pro-, meso-, metapeltidium), formation of three sterna, a complex prosoma–opisthosoma transition and a metasoma. By analyzing the body organization of Schizomida and comparing it to Thelyphonida and other arachnids, this article provides evidence for independent evolution of some of these features in Schizomida. This supports the idea that, among arachnids, multiple and independent evolutionary pathways have resulted in similar morphologies, that conventionally have been considered shared similarities. – The analysis of serial microscopic sections and μCT-imaging of segmental indicator muscles of the prosoma evidences that the propeltidium covers prosoma segments 0–4, and the metapeltidium covers segments 5 and 6. The mesopeltidium is a dorsolateral sclerotization of the pleural membrane, not assigned to a segment, and therefore not a tergite. The topographic association of segmental musculature and sclerites of the tripartite dorsum of the prosoma differs from other taxa with such external body organization, e.g., Palpigradi and Solifugae, suggesting independent evolutionary origin. – The prosoma–opisthosoma transition integrates the first opisthosoma segment into the prosoma. The sternite of the first opisthosoma segment forms the metasternum between the coxae of the fourth pair of walking legs. The morphology of the prosoma–opisthosoma transition is similar to Uropygi and Amblypygi, but is less complex. – The morphology of the metasoma (opisthosoma segments X-XII) of Schizomida and Thelyphonida differs from that of all other arachnids carrying a metasoma, thus providing support for multiple independent evolutionary origins of metasomata.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1467803924000434/pdfft?md5=0ab62a1719e4cc81d19530ce3b0bfa6f&pid=1-s2.0-S1467803924000434-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799) 海蜘蛛 Phoxichilidium femoratum(Rathke,1799 年)的雌性生殖系统
IF 2 3区 农林科学 Q2 Agricultural and Biological Sciences Pub Date : 2024-06-07 DOI: 10.1016/j.asd.2024.101370
Maria Petrova, Ekaterina Bogomolova

Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk – specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of P. femoratum, although their specific functions and prevalence in other sea spider species remain unclear.

海蜘蛛(Pycnogonida)是海洋螯足类。目前基于分子数据的海蜘蛛系统发育仍然不确定,并且与传统的形态学观点相矛盾。要解决这一矛盾,了解其内部解剖结构至关重要。海蜘蛛的生殖系统有望成为系统发育信号的来源,但我们在这方面的知识还很有限。本研究首次在超微结构水平上描述了海蜘蛛的整个雌性生殖系统。我们根据卵巢壁超微结构和卵母细胞发育阶段的分布,提出了更详细的卵巢功能区域划分建议。减数分裂开始于胚芽鞘,卵母细胞通过运输区进入卵黄囊。卵黄发生期的卵母细胞穿过卵黄壁,通过柄(特化细胞)与卵黄壁相连。早期卵黄发生期的卵母细胞中会出现 Balbiani 体,但随后就会消失。玻璃体包膜、卵黄和受精包膜的形成涉及功能各异的 RER 囊泡。该研究还发现生殖窦是一个独立的血球室,可提高卵黄形成卵母细胞附近的营养浓度。此外,研究还描述了股蜘蛛雌体中的输卵管和生殖腺,但其具体功能及其在其他海蜘蛛物种中的分布情况仍不清楚。
{"title":"The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799)","authors":"Maria Petrova,&nbsp;Ekaterina Bogomolova","doi":"10.1016/j.asd.2024.101370","DOIUrl":"https://doi.org/10.1016/j.asd.2024.101370","url":null,"abstract":"<div><p>Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk – specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of <em>P</em>. <em>femoratum</em>, although their specific functions and prevalence in other sea spider species remain unclear.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Arthropod Structure & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1