首页 > 最新文献

Arthropod Structure & Development最新文献

英文 中文
Insights into morphology of the 'columnar epithelium' within the female reproductive system of brachyuran crabs.
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2025-01-12 DOI: 10.1016/j.asd.2024.101408
Nicole Schröter, Urska Repnik, Dirk Brandis

The objective of this study is to gain a better understanding of the not well understood egg-transportation mechanisms through the female reproductive systems of crabs. For this, Carcinus maenas was chosen as a model to study the cuticular epithelium underlying the cuticle of the vagina and the ventral seminal receptacle. This cuticular epithelium is investigated by performing histochemical and ultrastructural analyses of the epithelial cells. The results show that this epithelium consists of specialized epithelial cells that show characteristic features of muscle-attachment cells or tendon cells, such as an abundance of microtubules in their cytoplasm and hemi-adherens junctions. These results improve our understanding of the mechanisms involved in the reproduction in brachyuran crabs and will have to be taken into consideration in the future, when trying to understand the functional morphology of the female reproductive system of crabs.

{"title":"Insights into morphology of the 'columnar epithelium' within the female reproductive system of brachyuran crabs.","authors":"Nicole Schröter, Urska Repnik, Dirk Brandis","doi":"10.1016/j.asd.2024.101408","DOIUrl":"https://doi.org/10.1016/j.asd.2024.101408","url":null,"abstract":"<p><p>The objective of this study is to gain a better understanding of the not well understood egg-transportation mechanisms through the female reproductive systems of crabs. For this, Carcinus maenas was chosen as a model to study the cuticular epithelium underlying the cuticle of the vagina and the ventral seminal receptacle. This cuticular epithelium is investigated by performing histochemical and ultrastructural analyses of the epithelial cells. The results show that this epithelium consists of specialized epithelial cells that show characteristic features of muscle-attachment cells or tendon cells, such as an abundance of microtubules in their cytoplasm and hemi-adherens junctions. These results improve our understanding of the mechanisms involved in the reproduction in brachyuran crabs and will have to be taken into consideration in the future, when trying to understand the functional morphology of the female reproductive system of crabs.</p>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"84 ","pages":"101408"},"PeriodicalIF":1.7,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
It's 'claw'-some: Ontogenetic claw shape changes in mites (Acari, Oribatida) as a consequence of ecological shifts. 它的 "爪 "很美:螨虫(螨类,Oribatida)在个体发育过程中的爪形变化是生态变化的结果。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-12-12 DOI: 10.1016/j.asd.2024.101405
Tobias Pfingstl, Michaela Kerschbaumer

Claw characteristics of oribatid mites are strongly correlated with environmental factors and these characters remain constant throughout development when immatures and adults share the same ecology and lifestyle. In the present study, claw traits of oribatid mite species with constant ecology were compared with those of species showing a clear ecological shift between juvenile and adult stage. The arboreal Sellnickia caudata and the saxicolous Niphocepheus nivalis dwell in the same microhabitat during their life-cycle, whereas immatures of the terrestrial Carabodes areolatus and Mycobates carli, as well as of the aquatic Hydrozetes lemnae, are, in contrast to their adults, endophagous, meaning they feed and burrow within lichen and plant tissue. We performed a geometric morphometric investigation of their claws and could reveal significant differences in the claw shapes of immatures and adults of all species, except for N. nivalis. Claws of the endophagous juveniles of C. areolatus, M. carli and H. lemnae are generally sharper and higher than those of their adult counterparts. The burrowing lifestyle of the immatures apparently necessitates such specific claw morphologies. Despite having a constant ecology, the arboreal S. caudata also shows distinct differences between immature and adult claw traits, with juveniles possessing stronger curved and sharper claws. But immature stages also possess an additional tarsal adhesive pad which lacks in the adult stage. The presence or absence of this additional adhesive pad apparently requires changes in claw morphology to allow firm attachment on diverse plant surfaces. The present results demonstrate that claw characteristic can change during the development depending on the given ecological factors faced by each developmental stage and depending on the presence of additional attachment devices.

{"title":"It's 'claw'-some: Ontogenetic claw shape changes in mites (Acari, Oribatida) as a consequence of ecological shifts.","authors":"Tobias Pfingstl, Michaela Kerschbaumer","doi":"10.1016/j.asd.2024.101405","DOIUrl":"https://doi.org/10.1016/j.asd.2024.101405","url":null,"abstract":"<p><p>Claw characteristics of oribatid mites are strongly correlated with environmental factors and these characters remain constant throughout development when immatures and adults share the same ecology and lifestyle. In the present study, claw traits of oribatid mite species with constant ecology were compared with those of species showing a clear ecological shift between juvenile and adult stage. The arboreal Sellnickia caudata and the saxicolous Niphocepheus nivalis dwell in the same microhabitat during their life-cycle, whereas immatures of the terrestrial Carabodes areolatus and Mycobates carli, as well as of the aquatic Hydrozetes lemnae, are, in contrast to their adults, endophagous, meaning they feed and burrow within lichen and plant tissue. We performed a geometric morphometric investigation of their claws and could reveal significant differences in the claw shapes of immatures and adults of all species, except for N. nivalis. Claws of the endophagous juveniles of C. areolatus, M. carli and H. lemnae are generally sharper and higher than those of their adult counterparts. The burrowing lifestyle of the immatures apparently necessitates such specific claw morphologies. Despite having a constant ecology, the arboreal S. caudata also shows distinct differences between immature and adult claw traits, with juveniles possessing stronger curved and sharper claws. But immature stages also possess an additional tarsal adhesive pad which lacks in the adult stage. The presence or absence of this additional adhesive pad apparently requires changes in claw morphology to allow firm attachment on diverse plant surfaces. The present results demonstrate that claw characteristic can change during the development depending on the given ecological factors faced by each developmental stage and depending on the presence of additional attachment devices.</p>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"84 ","pages":"101405"},"PeriodicalIF":1.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excretory glands of sea spiders (Pycnogonida, Nymphonidae).
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-01 Epub Date: 2024-12-04 DOI: 10.1016/j.asd.2024.101403
Nina Alexeeva, Ekaterina Bogomolova, Yuta Tamberg

All major arthropod taxa possess excretory glands - a type of filtration nephridium considered ancestral for this group. Pycnogonids form a basal branch of the arthropod phylogenetic tree and are ancient aquatic chelicerates, but they were believed to lack specialised excretory organs, except for Nymphopsis spinosissimum (Ammotheidae). Whether this condition is unique or common remained unknown due to lack of anatomical data for many species. Here we examined four nymphonids: Nymphon brevirostre, Nymphon grossipes, Nymphon serratum and Pentanymphon antarcticum using scanning and transmission electron microscopy, as well as light microscopy. In adults of all four species, we found excretory organs and describe ultrastructural details of all their parts: sacculus, reabsorption channel, excretory channel and the pore. In addition to the definitive (adult) excretory organs, we also detected some larval and juvenile transitory ones and were able to trace the origin of the sacculus podocytes from the non-epithelial mesoderm of the horizontal septum. All excretory organs are located in the appendages of the first three postocular segments of the cephalosoma (although not necessarily in all of them at once) because these areas can maintain the high hemolymph pressure necessary for ultrafiltration. The ultrastructure and development of the sacculus point toward the secondary nature of this cavity, although the coelomic status of the sacculi in sea spiders and other arthropods is still unclear.

{"title":"Excretory glands of sea spiders (Pycnogonida, Nymphonidae).","authors":"Nina Alexeeva, Ekaterina Bogomolova, Yuta Tamberg","doi":"10.1016/j.asd.2024.101403","DOIUrl":"10.1016/j.asd.2024.101403","url":null,"abstract":"<p><p>All major arthropod taxa possess excretory glands - a type of filtration nephridium considered ancestral for this group. Pycnogonids form a basal branch of the arthropod phylogenetic tree and are ancient aquatic chelicerates, but they were believed to lack specialised excretory organs, except for Nymphopsis spinosissimum (Ammotheidae). Whether this condition is unique or common remained unknown due to lack of anatomical data for many species. Here we examined four nymphonids: Nymphon brevirostre, Nymphon grossipes, Nymphon serratum and Pentanymphon antarcticum using scanning and transmission electron microscopy, as well as light microscopy. In adults of all four species, we found excretory organs and describe ultrastructural details of all their parts: sacculus, reabsorption channel, excretory channel and the pore. In addition to the definitive (adult) excretory organs, we also detected some larval and juvenile transitory ones and were able to trace the origin of the sacculus podocytes from the non-epithelial mesoderm of the horizontal septum. All excretory organs are located in the appendages of the first three postocular segments of the cephalosoma (although not necessarily in all of them at once) because these areas can maintain the high hemolymph pressure necessary for ultrafiltration. The ultrastructure and development of the sacculus point toward the secondary nature of this cavity, although the coelomic status of the sacculi in sea spiders and other arthropods is still unclear.</p>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":" ","pages":"101403"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142781895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The male reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799).
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-11-01 Epub Date: 2024-12-04 DOI: 10.1016/j.asd.2024.101404
Maria Petrova, Ekaterina Bogomolova

Sea spiders (Pycnogonida) are marine chelicerates. As a sister clade to Euchelicerata, Pycnogonida are an interesting group for comparative anatomy, however data on pycnogonid anatomy and biology remain scarce. This research provides a detailed account of the complete male reproductive system, gametogenesis, and sperm structure of a sea spider at the ultrastructural level. The male reproductive system of P. femoratum includes the testis, femoral, and ovigeral glands. The testis is typical of Pycnogonida: U-shaped with pedal outgrowths, opening with gonopores on legs 2-4. The testis lays within the horizontal septum, separated from it by ECM. The reproductive sinus is reduced. The ventral wall of the testis is germinative, spermatogenesis proceeds in cysts, all stages are evenly distributed throughout the whole testis. Sperm of P. femoratum is a typical sperm of animals with fertilization in mucus but without an acrosome. It lacks apomorphic euchelicerate features such as an acrosomal filament and implantation fossa. Femoral and ovigeral glands are sex-specific and likely related to reproduction. Ovigeral glands possibly secrete a fungicide substance, while the function of femoral glands remains obscure.

{"title":"The male reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799).","authors":"Maria Petrova, Ekaterina Bogomolova","doi":"10.1016/j.asd.2024.101404","DOIUrl":"10.1016/j.asd.2024.101404","url":null,"abstract":"<p><p>Sea spiders (Pycnogonida) are marine chelicerates. As a sister clade to Euchelicerata, Pycnogonida are an interesting group for comparative anatomy, however data on pycnogonid anatomy and biology remain scarce. This research provides a detailed account of the complete male reproductive system, gametogenesis, and sperm structure of a sea spider at the ultrastructural level. The male reproductive system of P. femoratum includes the testis, femoral, and ovigeral glands. The testis is typical of Pycnogonida: U-shaped with pedal outgrowths, opening with gonopores on legs 2-4. The testis lays within the horizontal septum, separated from it by ECM. The reproductive sinus is reduced. The ventral wall of the testis is germinative, spermatogenesis proceeds in cysts, all stages are evenly distributed throughout the whole testis. Sperm of P. femoratum is a typical sperm of animals with fertilization in mucus but without an acrosome. It lacks apomorphic euchelicerate features such as an acrosomal filament and implantation fossa. Femoral and ovigeral glands are sex-specific and likely related to reproduction. Ovigeral glands possibly secrete a fungicide substance, while the function of femoral glands remains obscure.</p>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":" ","pages":"101404"},"PeriodicalIF":1.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuticle ultrastructure of the Early Devonian trigonotarbid arachnid Palaeocharinus 早泥盆世三疣蛛形纲动物 Palaeocharinus 的角质层超微结构。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-10-19 DOI: 10.1016/j.asd.2024.101392
Emma J. Long , Gregory D. Edgecombe , Paul Kenrick , Xiaoya Ma
The cuticle is a key evolutionary innovation that played a crucial role in arthropod terrestrialization. Extensive research has elucidated the chemical and structural composition of the cuticle in extant arthropods, while fossil studies have further informed our understanding of cuticle evolution. This study examines the three-dimensionally preserved cuticular structure of the Early Devonian trigonotarbid arachnid genus Palaeocharinus, from the Rhynie chert of Scotland (∼408 Ma). Trigonotarbids, an extinct group of tetrapulmonate arachnids, are among the earliest known unequivocally terrestrial arthropods, and thus may shed light on the evolution of terrestriality. Using high-resolution Confocal Laser Scanning Microscopy (CLSM), we reveal detailed morphological features at the nanometre level. The external cuticle surface of Palaeocharinus is characterized by polygonal scales, sensilla, and small pores identified as the openings of dermal glands and wax canals. Internally, the cuticle exhibits polygonal clusters of pore canals, through which wax was transported from the epidermis to the cuticular surface. The pore canals twist along their vertical axes, reflecting the "twisted plywood" or Bouligand arrangement of chitin-protein microfibril planes characteristic of modern arthropod cuticles. Overall, the cuticle of Palaeocharinus is characteristically thick relative to those of other extinct and extant chelicerates, such thickening being a possible adaptation to terrestrial life.
角质层是一种关键的进化创新,在节肢动物的陆地化过程中发挥了至关重要的作用。广泛的研究阐明了现生节肢动物角质层的化学和结构组成,而化石研究则进一步加深了我们对角质层进化的理解。本研究考察了苏格兰Rhynie赭石(∼408 Ma)中早泥盆世三趾蛛属Palaeocharinus的三维保存角质层结构。Trigonotarbids是已灭绝的四足蛛形纲动物,是已知最早的明确陆生节肢动物之一,因此可能揭示了陆生动物的进化过程。利用高分辨率激光共聚焦扫描显微镜(CLSM),我们揭示了纳米级的详细形态特征。Palaeocharinus的外部角质层表面具有多角形鳞片、感觉器和小孔,这些小孔被确定为真皮腺体和蜡道的开口。角质层内部有多角形的孔道群,蜡通过这些孔道从表皮输送到角质层表面。孔道沿垂直轴扭曲,反映了现代节肢动物角质层特有的几丁质-蛋白质微纤维平面的 "扭曲胶合板 "或布利甘排列。总体而言,与其他已灭绝的和现存的螯足类动物相比,Palaeocharinus 的角质层非常厚,这种增厚可能是对陆生生活的一种适应。
{"title":"Cuticle ultrastructure of the Early Devonian trigonotarbid arachnid Palaeocharinus","authors":"Emma J. Long ,&nbsp;Gregory D. Edgecombe ,&nbsp;Paul Kenrick ,&nbsp;Xiaoya Ma","doi":"10.1016/j.asd.2024.101392","DOIUrl":"10.1016/j.asd.2024.101392","url":null,"abstract":"<div><div>The cuticle is a key evolutionary innovation that played a crucial role in arthropod terrestrialization. Extensive research has elucidated the chemical and structural composition of the cuticle in extant arthropods, while fossil studies have further informed our understanding of cuticle evolution. This study examines the three-dimensionally preserved cuticular structure of the Early Devonian trigonotarbid arachnid genus <em>Palaeocharinus</em>, from the Rhynie chert of Scotland (∼408 Ma). Trigonotarbids, an extinct group of tetrapulmonate arachnids, are among the earliest known unequivocally terrestrial arthropods, and thus may shed light on the evolution of terrestriality. Using high-resolution Confocal Laser Scanning Microscopy (CLSM), we reveal detailed morphological features at the nanometre level. The external cuticle surface of <em>Palaeocharinus</em> is characterized by polygonal scales, sensilla, and small pores identified as the openings of dermal glands and wax canals. Internally, the cuticle exhibits polygonal clusters of pore canals, through which wax was transported from the epidermis to the cuticular surface. The pore canals twist along their vertical axes, reflecting the \"twisted plywood\" or Bouligand arrangement of chitin-protein microfibril planes characteristic of modern arthropod cuticles. Overall, the cuticle of <em>Palaeocharinus</em> is characteristically thick relative to those of other extinct and extant chelicerates, such thickening being a possible adaptation to terrestrial life.</div></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"83 ","pages":"Article 101392"},"PeriodicalIF":1.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The eyestalk photophore of Northern krill Meganyctiphanes norvegica (M. Sars) (Euphausiacea) re-investigated: Innervation by specialized ommatidia of the compound eye 对北方磷虾(大戟纲)Meganyctiphanes norvegica (M. Sars)的眼柄光器进行再研究:复眼特化膜的神经支配。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.asd.2024.101393
Jakob Krieger , Torsten Fregin , Steffen Harzsch
Members of the Euphausiacea (“krill”) generate bioluminescence using light organs, the so-called photophores, including one pair associated with the eyestalks, two pairs on the thoracic segments, and four unpaired photophores on the pleon. The photophores generate light via a luciferin–luciferase type of biochemical reaction in light-emitting cells comprised in a photophore compartment called “lantern”. The behavioral significance of bioluminescence in krill is discussed controversially, and possible functions include a defensive function, camouflage by counter-shading, and intra-specific communication. Light production of all krill photophores is controlled by hormonal and neuronal pathways but our knowledge about the nature of these pathways is still rudimentary. Here, we provide a detailed description of the eyestalk photophore's histology in Northern krill Meganyctiphanes norvegica, and used immunohistochemistry combined with confocal laser-scan microscopy to explore this organ's serotonergic innervation. Furthermore, we provide evidence that the photophore is innervated by a distinct photophore nerve that originates from a specialized cluster of ca. 30 highly modified ommatidia at the dorsal rim of the compound eye that are optically isolated from the other ommatidia. Our findings suggest the compound eye – photophore link as a major anatomical axis to adjust the photophore activity.
磷虾类(Euphausiacea)的成员利用光器官(即所谓的光孔)产生生物发光,包括一对与眼柄相关的光孔、两对位于胸节上的光孔以及四个位于褶上的非配对光孔。这些光器通过发光细胞中的荧光素-荧光素酶类型的生化反应产生光,这些细胞组成的光器区被称为 "灯笼"。磷虾生物发光的行为意义尚存争议,可能的功能包括防御功能、通过反遮光进行伪装以及特异性内部交流。磷虾所有光生器的产光都受激素和神经通路的控制,但我们对这些通路的性质还知之甚少。在这里,我们详细描述了北磷虾(Meganyctiphanes norvegica)眼茎光团的组织学结构,并利用免疫组化结合激光共聚焦扫描显微镜来探索该器官的血清素能神经支配。此外,我们还提供了证据,证明复眼由一种独特的复眼神经支配,该神经源于复眼背侧边缘约 30 个高度改良的膜簇,这些膜簇在光学上与其他膜簇隔离。我们的研究结果表明,复眼与光团之间的联系是调节光团活动的主要解剖轴。
{"title":"The eyestalk photophore of Northern krill Meganyctiphanes norvegica (M. Sars) (Euphausiacea) re-investigated: Innervation by specialized ommatidia of the compound eye","authors":"Jakob Krieger ,&nbsp;Torsten Fregin ,&nbsp;Steffen Harzsch","doi":"10.1016/j.asd.2024.101393","DOIUrl":"10.1016/j.asd.2024.101393","url":null,"abstract":"<div><div>Members of the Euphausiacea (“krill”) generate bioluminescence using light organs, the so-called photophores, including one pair associated with the eyestalks, two pairs on the thoracic segments, and four unpaired photophores on the pleon. The photophores generate light <em>via</em> a luciferin–luciferase type of biochemical reaction in light-emitting cells comprised in a photophore compartment called “lantern”. The behavioral significance of bioluminescence in krill is discussed controversially, and possible functions include a defensive function, camouflage by counter-shading, and intra-specific communication. Light production of all krill photophores is controlled by hormonal and neuronal pathways but our knowledge about the nature of these pathways is still rudimentary. Here, we provide a detailed description of the eyestalk photophore's histology in Northern krill <em>Meganyctiphanes norvegica</em>, and used immunohistochemistry combined with confocal laser-scan microscopy to explore this organ's serotonergic innervation. Furthermore, we provide evidence that the photophore is innervated by a distinct photophore nerve that originates from a specialized cluster of ca. 30 highly modified ommatidia at the dorsal rim of the compound eye that are optically isolated from the other ommatidia. Our findings suggest the compound eye – photophore link as a major anatomical axis to adjust the photophore activity.</div></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"83 ","pages":"Article 101393"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of and structures involved in wing folding in featherwing beetles (Coleoptera: Ptiliidae) 羽翅甲虫(鞘翅目:Ptiliidae)翅膀折叠的进化和相关结构。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.asd.2024.101394
Pyotr N. Petrov, Natalia I. Reshetnikova, Sergey E. Farisenkov, Alexey A. Polilov
The ability to fold the wings is an important phenomenon in insect evolution and a feature that attracts the attention of engineers who develop biomimetic technologies. Beetles of the family Ptiliidae (featherwing beetles) are unique among microinsects in their ability to fold their bristled wings under the elytra and unfold them before flight. The folding and unfolding of bristled wings and of the structures involved in these processes varies among ptiliids, but only one species, Acrotrichis sericans, has been analyzed in detail. In this study, we analyze in detail the wing folding pattern and the mechanism of the folding and unfolding of the wings in species of different lineages of Ptiliidae, using scanning electron, сonfocal laser scanning, and optical microscopy, and compare the wing-folding patterns of Ptiliidae with those of the sister group, Hydraenidae, to reconstruct the evolution of the involved structures. We confirm that the two subfamilies of Ptiliidae have two distinct patterns of wing folding: Nossidiinae has retained the ancestral (‘agyrtid’) asymmetrical pattern with overlapping wings and with folds at different angles to the wing axis, while Ptiliinae, which includes the smallest of all known beetles, has evolved a symmetrical pattern with non-overlapping wings and folds perpendicular to the wing axis, with one additional oblique fold in the genus Ptenidium. Ptiliids have a longer alacrista, which helps to lock the elytra at rest, and a more complex set of structures involved in wing folding on abdominal tergites. These genus-specific structures, which include setae and wing-folding patches on some of the tergites and the palisade fringe of setae on the posterior margin of tergite 7, help the insect to tuck the wing under the elytron and fold it after flight. The symmetrical wing-folding pattern is simpler than the wing folding patterns of most larger beetles. The obtained data on the mechanisms and patterns of the folding and unfolding of the wings in Ptiliidae elucidate the evolution of wing folding as an adaptation protecting the wings at rest. Structures involved in wing folding can be used as distinguishing characters in taxonomy. The wing-folding mechanisms of Ptiliidae may eventually be used for developing miniature biomimetic robots.
折叠翅膀的能力是昆虫进化过程中的一个重要现象,也是吸引开发生物仿生技术的工程师关注的一个特征。羽翅甲虫(Ptiliidae)科甲虫在微小昆虫中是独一无二的,因为它们能够在飞行前将刚毛翅折叠并展开。刚毛翅的折叠和展开以及参与这些过程的结构在栉水母科昆虫中各不相同,但只有一个物种(Acrotrichis sericans)得到了详细分析。在本研究中,我们利用扫描电子显微镜、非聚焦激光扫描显微镜和光学显微镜,详细分析了桡足类不同品系物种的翅膀折叠模式以及翅膀折叠和展开的机制,并将桡足类的翅膀折叠模式与姊妹类水螅科的翅膀折叠模式进行了比较,重建了相关结构的演化过程。我们证实栉水母科的两个亚科具有两种不同的翅折叠模式:Nossidiinae保留了祖先("agyrtid")的不对称模式,翅膀重叠,褶皱与翅轴成不同角度;而Ptiliinae(包括所有已知甲虫中最小的一种)则进化出一种对称模式,翅膀不重叠,褶皱与翅轴垂直,在Ptenidium属中还有一个额外的斜褶皱。栉甲虫有一个较长的栉齿,有助于在静止时锁定背甲,腹部第3节上有一套更复杂的结构参与翅的折叠。这些种属特有的结构包括一些叶片上的刚毛和折翅斑块,以及第 7 片叶片后缘的刚毛边缘,有助于昆虫在飞行后将翅膀收在叶片下并折叠起来。这种对称的折翅模式比大多数大型甲虫的折翅模式简单。所获得的关于栉水母科昆虫折叠和展开翅膀的机制和模式的数据阐明了折叠翅膀的进化过程,这是一种在静止状态下保护翅膀的适应性进化。翅膀折叠的相关结构可作为分类学中的区分特征。桡足类的翅膀折叠机制最终可用于开发微型仿生机器人。
{"title":"Evolution of and structures involved in wing folding in featherwing beetles (Coleoptera: Ptiliidae)","authors":"Pyotr N. Petrov,&nbsp;Natalia I. Reshetnikova,&nbsp;Sergey E. Farisenkov,&nbsp;Alexey A. Polilov","doi":"10.1016/j.asd.2024.101394","DOIUrl":"10.1016/j.asd.2024.101394","url":null,"abstract":"<div><div>The ability to fold the wings is an important phenomenon in insect evolution and a feature that attracts the attention of engineers who develop biomimetic technologies. Beetles of the family Ptiliidae (featherwing beetles) are unique among microinsects in their ability to fold their bristled wings under the elytra and unfold them before flight. The folding and unfolding of bristled wings and of the structures involved in these processes varies among ptiliids, but only one species, <em>Acrotrichis sericans,</em> has been analyzed in detail<em>.</em> In this study, we analyze in detail the wing folding pattern and the mechanism of the folding and unfolding of the wings in species of different lineages of Ptiliidae, using scanning electron, сonfocal laser scanning, and optical microscopy, and compare the wing-folding patterns of Ptiliidae with those of the sister group, Hydraenidae, to reconstruct the evolution of the involved structures. We confirm that the two subfamilies of Ptiliidae have two distinct patterns of wing folding: Nossidiinae has retained the ancestral (‘agyrtid’) asymmetrical pattern with overlapping wings and with folds at different angles to the wing axis, while Ptiliinae, which includes the smallest of all known beetles, has evolved a symmetrical pattern with non-overlapping wings and folds perpendicular to the wing axis, with one additional oblique fold in the genus <em>Ptenidium</em>. Ptiliids have a longer alacrista, which helps to lock the elytra at rest, and a more complex set of structures involved in wing folding on abdominal tergites. These genus-specific structures, which include setae and wing-folding patches on some of the tergites and the palisade fringe of setae on the posterior margin of tergite 7, help the insect to tuck the wing under the elytron and fold it after flight. The symmetrical wing-folding pattern is simpler than the wing folding patterns of most larger beetles. The obtained data on the mechanisms and patterns of the folding and unfolding of the wings in Ptiliidae elucidate the evolution of wing folding as an adaptation protecting the wings at rest. Structures involved in wing folding can be used as distinguishing characters in taxonomy. The wing-folding mechanisms of Ptiliidae may eventually be used for developing miniature biomimetic robots.</div></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"83 ","pages":"Article 101394"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology of lecithotrophic postlarvae of genus Austropallene (Arthropoda: Chelicerata) with some notes on reproductive strategy 奥氏藻属(节肢动物门:螯足纲)卵磷脂营养型后生动物的形态学以及关于繁殖策略的一些说明。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-10-18 DOI: 10.1016/j.asd.2024.101395
Nina Alexeeva, Daria Martynova
The family Callipallenidae Hilton, 1942 belongs to the superfamily Nymphonoidea Pocock, 1904 together with other family, Nymphonidae. The lecithotrophic postlarvae hatch from the eggs of the callipallenid sea spiders, but the data on this life stage are very scarce and fragmentary. This gives a very limited understanding of larval anatomy, morphology, and diversity. The larvae of Austropallene bucera Pushkin, 1993, Austropallene calmani Gordon, 1944, and Austropallene cristata Bouvier, 1911 have been studied and described for the first time by the methods of light (LM) and scanning electron microscopy (SEM). The main morphometry parameters have been determined in larvae and adult egg-bearing males. The general plan of the postlarvae is presented together with its specific features. The postlarvae of the studied Austropallene species combine the features of lecithotrophic and free-living pycnogonid larvae. The diversity of larvae in the Nymphonoidea superfamily has been analysed considering original and published data, and a morphological series has been developed. The complex of lecithotrophic larvae, like postlarvae of Callipallenidae, should be considered as primary for the entire superfamily. It is also suggested that sea spiders with lecithotrophic larvae tend to follow the K-strategy, but they care for their offspring to varying degrees.
海蜘蛛科(Callipallenidae)希尔顿(Hilton),1942 年,与蛱蝶科(Nymphonidae)其他科一起隶属于蛱蝶超科(Nymphonoidea Pocock),1904 年。卵磷脂营养型后幼体从海蜘蛛的卵中孵化出来,但有关这一生命阶段的数据非常稀少和零碎。这使得人们对幼虫解剖、形态和多样性的了解非常有限。我们首次采用光镜(LM)和扫描电子显微镜(SEM)对 Austropallene bucera Pushkin, 1993、Austropallene calmani Gordon, 1944 和 Austropallene cristata Bouvier, 1911 的幼虫进行了研究和描述。对幼虫和含卵雄性成虫的主要形态参数进行了测定。同时还介绍了后幼体的总平面图及其具体特征。所研究的奥氏囊虫物种的后生幼虫兼具卵磷脂营养型幼虫和自由生活型吡虫幼虫的特征。根据原始数据和已发表的数据,对蛱蝶超科幼虫的多样性进行了分析,并建立了形态学系列。卵磷脂营养幼虫的复合体,如 Callipallenidae 的后生幼虫,应被视为整个超科的主要幼虫。研究还表明,具有卵磷脂营养幼虫的海蜘蛛倾向于遵循 K 战略,但它们对后代的照顾程度各不相同。
{"title":"Morphology of lecithotrophic postlarvae of genus Austropallene (Arthropoda: Chelicerata) with some notes on reproductive strategy","authors":"Nina Alexeeva,&nbsp;Daria Martynova","doi":"10.1016/j.asd.2024.101395","DOIUrl":"10.1016/j.asd.2024.101395","url":null,"abstract":"<div><div>The family Callipallenidae Hilton, 1942 belongs to the superfamily Nymphonoidea Pocock, 1904 together with other family, Nymphonidae. The lecithotrophic postlarvae hatch from the eggs of the callipallenid sea spiders, but the data on this life stage are very scarce and fragmentary. This gives a very limited understanding of larval anatomy, morphology, and diversity. The larvae of <em>Austropallene bucera</em> Pushkin, 1993, <em>Austropallene calmani</em> Gordon, 1944, and <em>Austropallene cristata</em> Bouvier, 1911 have been studied and described for the first time by the methods of light (LM) and scanning electron microscopy (SEM). The main morphometry parameters have been determined in larvae and adult egg-bearing males. The general plan of the postlarvae is presented together with its specific features. The postlarvae of the studied <em>Austropallene</em> species combine the features of lecithotrophic and free-living pycnogonid larvae. The diversity of larvae in the Nymphonoidea superfamily has been analysed considering original and published data, and a morphological series has been developed. The complex of lecithotrophic larvae, like postlarvae of Callipallenidae, should be considered as primary for the entire superfamily. It is also suggested that sea spiders with lecithotrophic larvae tend to follow the K-strategy, but they care for their offspring to varying degrees.</div></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"83 ","pages":"Article 101395"},"PeriodicalIF":1.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae) 蝎蝇(Mecoptera: Panorpidae)幼虫直肠的超微结构。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101383
Wan-Ruo Ma, Lu Liu, Ge Wang, Jia-Li Bai, Bao-Zhen Hua

The rectum is an important part of the alimentary canal responsible for ion and water reabsorption of insects. However, it has rarely been studied in the larvae of Panorpidae, the largest family in Mecoptera. Here, we investigated the ultrastructure of larval rectum of the scorpionfly Panorpa liui Hua, 1997 using light and transmission electron microscopy. The rectum comprises tracheal muscular layers, connective tissue, non-cellular basal lamina, junctional cells, rectal epithelium, cuticle with irregular outlines, and a central lumen. The rectal epithelium is infolded to form six longitudinal rectal folds, which are distinct from rectal pads or papillae. In each rectal fold, the apical and basal plasma membranes of epithelial cells are infolded and the lateral plasma membranes form septate and scalariform junctions. The well-developed rectal folds are postulated to be closely associated with reabsorption of ions and water in the larvae. The associations of rectal folds with larval behaviors are briefly discussed in Mecoptera.

直肠是消化道的重要组成部分,负责昆虫的离子和水分重吸收。然而,对鳞翅目昆虫中最大的科--蝎蝇科幼虫直肠的研究却很少。在此,我们利用光显微镜和透射电子显微镜研究了蝎蝇(Panorpa liui Hua,1997 年)幼虫直肠的超微结构。直肠由气管肌肉层、结缔组织、非细胞基底层、连接细胞、直肠上皮、轮廓不规则的角质层和中央管腔组成。直肠上皮内折形成六个纵向的直肠褶皱,与直肠垫或直肠乳头不同。在每个直肠褶皱中,上皮细胞的顶端和基底浆膜内折,外侧浆膜形成隔膜和鳞状连接。据推测,发达的直肠褶皱与幼虫重吸收离子和水分密切相关。直肠褶皱与幼虫行为的关系在《甲壳动物》中有简要论述。
{"title":"Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae)","authors":"Wan-Ruo Ma,&nbsp;Lu Liu,&nbsp;Ge Wang,&nbsp;Jia-Li Bai,&nbsp;Bao-Zhen Hua","doi":"10.1016/j.asd.2024.101383","DOIUrl":"10.1016/j.asd.2024.101383","url":null,"abstract":"<div><p>The rectum is an important part of the alimentary canal responsible for ion and water reabsorption of insects. However, it has rarely been studied in the larvae of Panorpidae, the largest family in Mecoptera. Here, we investigated the ultrastructure of larval rectum of the scorpionfly <em>Panorpa liui</em> Hua, 1997 using light and transmission electron microscopy. The rectum comprises tracheal muscular layers, connective tissue, non-cellular basal lamina, junctional cells, rectal epithelium, cuticle with irregular outlines, and a central lumen. The rectal epithelium is infolded to form six longitudinal rectal folds, which are distinct from rectal pads or papillae. In each rectal fold, the apical and basal plasma membranes of epithelial cells are infolded and the lateral plasma membranes form septate and scalariform junctions. The well-developed rectal folds are postulated to be closely associated with reabsorption of ions and water in the larvae. The associations of rectal folds with larval behaviors are briefly discussed in Mecoptera.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"82 ","pages":"Article 101383"},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea) 五种单蜂(膜翅目,Apoidea)触角感觉器的形态和分布。
IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.asd.2024.101382
Martina Lento , Maria Luigia Vommaro , Simone Flaminio , Pietro Brandmayr , Anita Giglio

Solitary bees play a crucial role in ecological systems, contributing to the pollination of crops and wild plants. All females are reproductive, and their habitat requirements include nesting sites, food resources and nesting materials. Although these activities require the ability to detect biotic and abiotic stimuli in the environment, the sensory system of these species is poorly studied. In this study, the antennal sensilla of five solitary bee species belonging to three Apoidea families were investigated using scanning electron microscopy. These included two species of stem-nesting bees, Ceratina cucurbitina (Rossi, 1792) (Apidae) and Osmia scutellaris (Morawitz, 1868) (Megachilidae), and three species of ground-nesting bees, Lasioglossum brevicorne (Schenck, 1870), Lasioglossum leucozonium (Schrank, 1781), and Lasioglossum villosulum (Kirby, 1802) (Halictidae). Thirteen different types of antennal sensilla were identified in females based on their morphological characteristics: sensilla trichodea (subtypes STI, II, III), chaetica (subtypes SchI, II), basiconica (subtypes SBI, II, III, IV), placodea, campaniformia, coeloconica, and ampullacea. Their functional role was discussed and morphology was compared among the species and within the antennal segments in each species. The results provide a baseline for further physiological and behavioural studies to determine the role of antennal sensilla in habitat selection, food search and nesting site selection.

独居蜜蜂在生态系统中发挥着至关重要的作用,为农作物和野生植物授粉。所有雌蜂都具有生殖能力,它们对栖息地的要求包括筑巢场所、食物资源和筑巢材料。虽然这些活动需要探测环境中生物和非生物刺激的能力,但对这些物种的感觉系统研究甚少。本研究利用扫描电子显微镜对属于三个Apoidea科的五个独居蜂种的触角感觉器进行了研究。这些物种包括两种茎巢蜜蜂:Ceratina cucurbitina (Rossi, 1792) (Apidae) 和 Osmia scutellaris (Morawitz, 1868) (Megachilidae) 以及三种地巢蜜蜂:Lasioglossum brevicorne (Schenck, 1870), Lasioglossum leucozonium (Schrank, 1781) 和 Lasioglossum villosulum (Kirby, 1802) (Halictidae) 。根据雌性触角感觉器的形态特征,确定了 13 种不同类型的触角感觉器:毛状感觉器(STI、II、III 亚型)、皴裂感觉器(SchI、II 亚型)、基本感觉器(SBI、II、III、IV 亚型)、placentodea、campaniformia、coeloconica 和 ampullacea。对它们的功能作用进行了讨论,并比较了不同物种之间以及每个物种触角节内的形态。研究结果为进一步的生理和行为研究提供了基础,以确定触角感觉器在生境选择、食物搜寻和筑巢地点选择中的作用。
{"title":"Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea)","authors":"Martina Lento ,&nbsp;Maria Luigia Vommaro ,&nbsp;Simone Flaminio ,&nbsp;Pietro Brandmayr ,&nbsp;Anita Giglio","doi":"10.1016/j.asd.2024.101382","DOIUrl":"10.1016/j.asd.2024.101382","url":null,"abstract":"<div><p>Solitary bees play a crucial role in ecological systems, contributing to the pollination of crops and wild plants. All females are reproductive, and their habitat requirements include nesting sites, food resources and nesting materials. Although these activities require the ability to detect biotic and abiotic stimuli in the environment, the sensory system of these species is poorly studied. In this study, the antennal sensilla of five solitary bee species belonging to three Apoidea families were investigated using scanning electron microscopy. These included two species of stem-nesting bees, <em>Ceratina cucurbitina</em> (Rossi, 1792) (Apidae) and <em>Osmia scutellaris</em> (Morawitz, 1868) (Megachilidae), and three species of ground-nesting bees, <em>Lasioglossum brevicorne</em> (Schenck, 1870), <em>Lasioglossum leucozonium</em> (Schrank, 1781), and <em>Lasioglossum villosulum</em> (Kirby, 1802) (Halictidae). Thirteen different types of antennal sensilla were identified in females based on their morphological characteristics: sensilla trichodea (subtypes STI, II, III), chaetica (subtypes SchI, II), basiconica (subtypes SBI, II, III, IV), placodea, campaniformia, coeloconica, and ampullacea. Their functional role was discussed and morphology was compared among the species and within the antennal segments in each species. The results provide a baseline for further physiological and behavioural studies to determine the role of antennal sensilla in habitat selection, food search and nesting site selection.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":"82 ","pages":"Article 101382"},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Arthropod Structure & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1