A Novel FACS-Based Workflow for Simultaneous Assessment of RedOx Status, Cellular Phenotype, and Mitochondrial Genome Stability.

BioChem Pub Date : 2021-06-01 Epub Date: 2021-04-02 DOI:10.3390/biochem1010001
Patrick M McTernan, Paige S Katz, Constance Porretta, David A Welsh, Robert W Siggins
{"title":"A Novel FACS-Based Workflow for Simultaneous Assessment of RedOx Status, Cellular Phenotype, and Mitochondrial Genome Stability.","authors":"Patrick M McTernan,&nbsp;Paige S Katz,&nbsp;Constance Porretta,&nbsp;David A Welsh,&nbsp;Robert W Siggins","doi":"10.3390/biochem1010001","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular reduction-oxidation (RedOx) status mediates a myriad of critical biological processes. Importantly, RedOx status regulates the differentiation of hematopoietic stem and progenitor cells (HSPCs), mesenchymal stromal cells (MSCs) and maturation of CD8+ T Lymphocytes. In most cells, mitochondria are the greatest contributors of intracellular reactive oxygen species (ROS). Excess ROS leads to mitochondrial DNA (mtDNA) damage and protein depletion. We have developed a fluorescence-activated cell sorting (FACS)-based protocol to simultaneously analyze RedOx status and mtDNA integrity. This simultaneous analysis includes measurements of ROS (reduced glutathione (GSH)), ATP5H (nuclear encoded protein), MTCO1 (mitochondrial DNA encoded protein), and cell surface markers to allow discrimination of different cell populations. Using the ratio of MTCO1 to ATP5H median fluorescence intensity (MFI), we can gain an understanding of mtDNA genomic stability, since MTCO1 levels are decreased when mtDNA becomes significantly damaged. Furthermore, this workflow can be optimized for sorting cells, using any of the above parameters, allowing for downstream quantification of mtDNA genome copies/nucleus by quantitative PCR (qPCR). This unique methodology can be used to enhance analyses of the impacts of pharmacological interventions, as well as physiological and pathophysiological processes on RedOx status along with mitochondrial dynamics in most cell types.</p>","PeriodicalId":72357,"journal":{"name":"BioChem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/biochem1010001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biochem1010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular reduction-oxidation (RedOx) status mediates a myriad of critical biological processes. Importantly, RedOx status regulates the differentiation of hematopoietic stem and progenitor cells (HSPCs), mesenchymal stromal cells (MSCs) and maturation of CD8+ T Lymphocytes. In most cells, mitochondria are the greatest contributors of intracellular reactive oxygen species (ROS). Excess ROS leads to mitochondrial DNA (mtDNA) damage and protein depletion. We have developed a fluorescence-activated cell sorting (FACS)-based protocol to simultaneously analyze RedOx status and mtDNA integrity. This simultaneous analysis includes measurements of ROS (reduced glutathione (GSH)), ATP5H (nuclear encoded protein), MTCO1 (mitochondrial DNA encoded protein), and cell surface markers to allow discrimination of different cell populations. Using the ratio of MTCO1 to ATP5H median fluorescence intensity (MFI), we can gain an understanding of mtDNA genomic stability, since MTCO1 levels are decreased when mtDNA becomes significantly damaged. Furthermore, this workflow can be optimized for sorting cells, using any of the above parameters, allowing for downstream quantification of mtDNA genome copies/nucleus by quantitative PCR (qPCR). This unique methodology can be used to enhance analyses of the impacts of pharmacological interventions, as well as physiological and pathophysiological processes on RedOx status along with mitochondrial dynamics in most cell types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时评估氧化还原状态、细胞表型和线粒体基因组稳定性的一种新的基于facs的工作流程。
细胞内还原氧化(RedOx)状态介导了无数关键的生物过程。重要的是,氧化还原状态调节造血干细胞和祖细胞(HSPCs)、间充质基质细胞(MSCs)的分化和CD8+ T淋巴细胞的成熟。在大多数细胞中,线粒体是细胞内活性氧(ROS)的最大贡献者。过量的活性氧导致线粒体DNA (mtDNA)损伤和蛋白质消耗。我们开发了一种基于荧光激活细胞分选(FACS)的方案,可以同时分析氧化还原状态和mtDNA完整性。这种同步分析包括测量ROS(还原性谷胱甘肽(GSH))、ATP5H(核编码蛋白)、MTCO1(线粒体DNA编码蛋白)和细胞表面标记物,以区分不同的细胞群。利用MTCO1与ATP5H中位荧光强度(MFI)的比值,我们可以了解mtDNA基因组的稳定性,因为当mtDNA显著受损时,MTCO1水平会降低。此外,该工作流程可以优化细胞分选,使用上述任何参数,允许通过定量PCR (qPCR)对mtDNA基因组拷贝/细胞核进行下游定量。这种独特的方法可以用来加强分析药物干预的影响,以及生理和病理生理过程对氧化还原状态的影响,以及大多数细胞类型的线粒体动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Antioxidant, Antibacterial and Enzyme-Inhibitory Properties of Dittany and Thyme Extracts and Their Application in Hydrogel Preparation Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention Novel Tetrazolium-Based Colorimetric Assay for Helicase nsp13 in SARS-CoV-2 Bioinformatic Analysis of Metabolomic Data: From Raw Spectra to Biological Insight New Insights into Hsp90 Structural Plasticity Revealed by cryoEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1