Bi-potential hPSC-derived Müllerian duct-like cells for full-thickness and functional endometrium regeneration.

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING npj Regenerative Medicine Pub Date : 2022-11-23 DOI:10.1038/s41536-022-00263-2
Lin Gong, Nanfang Nie, Xilin Shen, Jingwei Zhang, Yu Li, Yixiao Liu, Jiaqi Xu, Wei Jiang, Yanshan Liu, Hua Liu, Bingbing Wu, XiaoHui Zou
{"title":"Bi-potential hPSC-derived Müllerian duct-like cells for full-thickness and functional endometrium regeneration.","authors":"Lin Gong,&nbsp;Nanfang Nie,&nbsp;Xilin Shen,&nbsp;Jingwei Zhang,&nbsp;Yu Li,&nbsp;Yixiao Liu,&nbsp;Jiaqi Xu,&nbsp;Wei Jiang,&nbsp;Yanshan Liu,&nbsp;Hua Liu,&nbsp;Bingbing Wu,&nbsp;XiaoHui Zou","doi":"10.1038/s41536-022-00263-2","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-based tissue regeneration strategies are promising treatments for severe endometrial injuries. However, there are few appropriate seed cells for regenerating a full-thickness endometrium, which mainly consists of epithelia and stroma. Müllerian ducts in female embryonic development develop into endometrial epithelia and stroma. Hence, we first generated human pluripotent stem cells (hPSC)-derived Müllerian duct-like cells (MDLCs) using a defined and effective protocol. The MDLCs are bi-potent, can gradually differentiate into endometrial epithelial and stromal cells, and reconstitute full-thickness endometrium in vitro and in vivo. Furthermore, MDLCs showed the in situ repair capabilities of reconstructing endometrial structure and recovering pregnancy function in full-thickness endometrial injury rats, and their differentiation fate was revealed by single-cell RNA sequencing (scRNA-seq). Our study provides a strategy for hPSC differentiation into endometrial lineages and an alternative seed cell for injured endometrial regeneration.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684429/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-022-00263-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Stem cell-based tissue regeneration strategies are promising treatments for severe endometrial injuries. However, there are few appropriate seed cells for regenerating a full-thickness endometrium, which mainly consists of epithelia and stroma. Müllerian ducts in female embryonic development develop into endometrial epithelia and stroma. Hence, we first generated human pluripotent stem cells (hPSC)-derived Müllerian duct-like cells (MDLCs) using a defined and effective protocol. The MDLCs are bi-potent, can gradually differentiate into endometrial epithelial and stromal cells, and reconstitute full-thickness endometrium in vitro and in vivo. Furthermore, MDLCs showed the in situ repair capabilities of reconstructing endometrial structure and recovering pregnancy function in full-thickness endometrial injury rats, and their differentiation fate was revealed by single-cell RNA sequencing (scRNA-seq). Our study provides a strategy for hPSC differentiation into endometrial lineages and an alternative seed cell for injured endometrial regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双电位hpsc衍生的勒氏管样细胞用于全层和功能性子宫内膜再生。
基于干细胞的组织再生策略是治疗严重子宫内膜损伤的有希望的方法。然而,很少有合适的种子细胞再生全层子宫内膜,主要由上皮和间质组成。在女性胚胎发育过程中,胚乳管发育为子宫内膜上皮和间质。因此,我们首先使用明确有效的方案生成了人类多能干细胞(hPSC)衍生的勒氏管样细胞(mdlc)。mdlc具有双效性,可逐渐分化为子宫内膜上皮细胞和间质细胞,并在体外和体内重建全层子宫内膜。此外,mdlc在全层子宫内膜损伤大鼠中表现出重建子宫内膜结构和恢复妊娠功能的原位修复能力,并通过单细胞RNA测序(scRNA-seq)揭示了其分化命运。我们的研究为hPSC分化为子宫内膜谱系和损伤子宫内膜再生的替代种子细胞提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
期刊最新文献
Role of umbilical cord mesenchymal stromal cells in skin rejuvenation. Exploiting in silico modelling to enhance translation of liver cell therapies from bench to bedside. Structural, angiogenic, and immune responses influencing myocardial regeneration: a glimpse into the crucible Epigenetic mechanisms regulate sex differences in cardiac reparative functions of bone marrow progenitor cells The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1