E. E. Swails, M. Ardón, K. W. Krauss, A. L. Peralta, R. E. Emanuel, A. M. Helton, J. L. Morse, L. Gutenberg, N. Cormier, D. Shoch, S. Settlemyer, E. Soderholm, B. P. Boutin, C. Peoples, S. Ward
{"title":"Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States","authors":"E. E. Swails, M. Ardón, K. W. Krauss, A. L. Peralta, R. E. Emanuel, A. M. Helton, J. L. Morse, L. Gutenberg, N. Cormier, D. Shoch, S. Settlemyer, E. Soderholm, B. P. Boutin, C. Peoples, S. Ward","doi":"10.1186/s13021-022-00219-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO<sub>2</sub>) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration that reduces peat CO<sub>2</sub> emissions from these ecosystems. Measuring soil respiration and physical drivers across a range of site characteristics and land use histories is valuable for understanding how CO<sub>2</sub> emissions from peat decomposition may respond to raising water table levels. We combined measurements of total soil respiration, depth to water table from soil surface, and soil temperature from drained and restored peatlands at three locations in eastern North Carolina and one location in southeastern Virginia to investigate relationships among total soil respiration and physical drivers, and to develop models relating total soil respiration to parameters that can be easily measured and monitored in the field.</p><h3>Results</h3><p>Total soil respiration increased with deeper water tables and warmer soil temperatures in both drained and hydrologically restored peatlands. Variation in soil respiration was more strongly linked to soil temperature at drained (R<sup>2</sup> = 0.57, p < 0.0001) than restored sites (R<sup>2</sup> = 0.28, p < 0.0001).</p><h3>Conclusions</h3><p>The results suggest that drainage amplifies the impact of warming temperatures on peat decomposition. Proxy measurements for estimation of CO<sub>2</sub> emissions from peat decomposition represent a considerable cost reduction compared to direct soil flux measurements for land managers contemplating the potential climate impact of restoring drained peatland sites. Research can help to increase understanding of factors influencing variation in soil respiration in addition to physical variables such as depth to water table and soil temperature.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675111/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-022-00219-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Background
Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO2) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration that reduces peat CO2 emissions from these ecosystems. Measuring soil respiration and physical drivers across a range of site characteristics and land use histories is valuable for understanding how CO2 emissions from peat decomposition may respond to raising water table levels. We combined measurements of total soil respiration, depth to water table from soil surface, and soil temperature from drained and restored peatlands at three locations in eastern North Carolina and one location in southeastern Virginia to investigate relationships among total soil respiration and physical drivers, and to develop models relating total soil respiration to parameters that can be easily measured and monitored in the field.
Results
Total soil respiration increased with deeper water tables and warmer soil temperatures in both drained and hydrologically restored peatlands. Variation in soil respiration was more strongly linked to soil temperature at drained (R2 = 0.57, p < 0.0001) than restored sites (R2 = 0.28, p < 0.0001).
Conclusions
The results suggest that drainage amplifies the impact of warming temperatures on peat decomposition. Proxy measurements for estimation of CO2 emissions from peat decomposition represent a considerable cost reduction compared to direct soil flux measurements for land managers contemplating the potential climate impact of restoring drained peatland sites. Research can help to increase understanding of factors influencing variation in soil respiration in addition to physical variables such as depth to water table and soil temperature.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.