Efficient Transformation of Furfuryl Alcohol Into Ethyl Levulinates via Alcoholysis Reaction Catalyzed by SnO2/H-Mordenite Catalyst

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Catalysis Surveys from Asia Pub Date : 2022-02-02 DOI:10.1007/s10563-022-09354-y
Hussain SK, Putrakumar Balla, Bhanuchander Ponnala, Srinivasarao Ginjupalli, Nagaraju Nekkala, Kumara Swamy Koppadi, V R Chary Komandur
{"title":"Efficient Transformation of Furfuryl Alcohol Into Ethyl Levulinates via Alcoholysis Reaction Catalyzed by SnO2/H-Mordenite Catalyst","authors":"Hussain SK,&nbsp;Putrakumar Balla,&nbsp;Bhanuchander Ponnala,&nbsp;Srinivasarao Ginjupalli,&nbsp;Nagaraju Nekkala,&nbsp;Kumara Swamy Koppadi,&nbsp;V R Chary Komandur","doi":"10.1007/s10563-022-09354-y","DOIUrl":null,"url":null,"abstract":"<p>Catalytic production of ethyl levulinate by alcoholysis of furfuryl alcohol with ethanol was investigated over H-mordenite supported Sn catalyst under atmospheric N<sub>2</sub> pressure. The catalysts with different Sn loadings (5, 10, 15 and 20 wt%) over H-mordenite were synthesized by adopting a simple and facile wet impregnation method. Detailed physical–chemical properties of synthesized catalysts were analyzed through X-ray diffraction, N<sub>2</sub>-physisorption, temperature-programmed desorption of ammonia (TPD-NH<sub>3</sub>), transmission electron microscopy (TEM), scanning electron microscopy (SEM–EDS) and pyridine-adsorbed FT-IR techniques, respectively. The XRD results and elemental mapping of Sn studies depicted the formation of well dispersed Sn particles over H-mordenite structure. The Sn impregnated H-mordenite exhibited high total acidity and thus, providing a large number of total acid sites which are accessible to the reactant molecules. Sn loadings had a significant effect on the reaction performance. The characterization results evidenced the total acidity of the H- mordenite support and the Sn dispersion is well correlated with the activity in furfural alcohol conversion and selectivity. Thus, an optimized catalytic system, i.e., with 10 wt% Sn/H-mordenite has shown superior activity in the alcoholysis of furfuryl alcohol with ethanol as a co-reactant.</p>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 2","pages":"104 - 114"},"PeriodicalIF":2.1000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09354-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Catalytic production of ethyl levulinate by alcoholysis of furfuryl alcohol with ethanol was investigated over H-mordenite supported Sn catalyst under atmospheric N2 pressure. The catalysts with different Sn loadings (5, 10, 15 and 20 wt%) over H-mordenite were synthesized by adopting a simple and facile wet impregnation method. Detailed physical–chemical properties of synthesized catalysts were analyzed through X-ray diffraction, N2-physisorption, temperature-programmed desorption of ammonia (TPD-NH3), transmission electron microscopy (TEM), scanning electron microscopy (SEM–EDS) and pyridine-adsorbed FT-IR techniques, respectively. The XRD results and elemental mapping of Sn studies depicted the formation of well dispersed Sn particles over H-mordenite structure. The Sn impregnated H-mordenite exhibited high total acidity and thus, providing a large number of total acid sites which are accessible to the reactant molecules. Sn loadings had a significant effect on the reaction performance. The characterization results evidenced the total acidity of the H- mordenite support and the Sn dispersion is well correlated with the activity in furfural alcohol conversion and selectivity. Thus, an optimized catalytic system, i.e., with 10 wt% Sn/H-mordenite has shown superior activity in the alcoholysis of furfuryl alcohol with ethanol as a co-reactant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SnO2/ h -丝光沸石催化糠醇醇解反应高效转化为乙酰丙酸乙酯
在常压N2条件下,用h -丝光沸石负载的锡催化剂催化糠醇与乙醇醇解制备乙酰丙酸乙酯。采用简单易行的湿浸渍法,在h -丝光沸石上合成了含锡量分别为5、10、15、20 wt%的催化剂。分别通过x射线衍射、n2物理吸附、程序升温解吸氨(TPD-NH3)、透射电子显微镜(TEM)、扫描电子显微镜(SEM-EDS)和吡啶吸附FT-IR技术对合成的催化剂进行了详细的理化性质分析。x射线衍射(XRD)结果和元素映射研究表明,在h -丝光沸石结构上形成了分散良好的Sn颗粒。锡浸渍h -丝光沸石表现出较高的总酸度,从而为反应物分子提供了大量可接近的总酸位。Sn的加入对反应性能有显著影响。表征结果表明,H-丝光沸石载体的总酸度和锡的分散度与糠醛醇转化活性和选择性密切相关。因此,一个优化的催化体系,即10 wt% Sn/ h -丝光沸石,在乙醇为助反应物的糠醇醇解中表现出优越的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Surveys from Asia
Catalysis Surveys from Asia 化学-物理化学
CiteScore
4.80
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.
期刊最新文献
Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1