Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa

IF 2.2 4区 工程技术 Q2 Chemistry Gold Bulletin Pub Date : 2013-07-02 DOI:10.1007/s13404-013-0096-7
Gérrard Eddy Jai Poinern, Peter Chapman, Xuan Le, Derek Fawcett
{"title":"Green biosynthesis of gold nanometre scale plates using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa","authors":"Gérrard Eddy Jai Poinern,&nbsp;Peter Chapman,&nbsp;Xuan Le,&nbsp;Derek Fawcett","doi":"10.1007/s13404-013-0096-7","DOIUrl":null,"url":null,"abstract":"<p>In this preliminary study, we demonstrate an environmentally friendly process for the green synthesis of gold nanometre scale particles using the leaf extract from an indigenous Australian plant <i>Eucalyptus macrocarpa</i> as both the stabilising agent and the reducing agent. The synthesis process is straightforward, clean and non-toxic. It also has the advantages of being performed at room temperature and does not need complex processing equipment. Formation of the gold nanometre sized particles was confirmed and characterised by UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy and field emission scanning electron microscopy. The antibacterial activity of the synthesised gold particles was also quantified using the sensitivity method of Kirby–Bauer.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-013-0096-7","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-013-0096-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 42

Abstract

In this preliminary study, we demonstrate an environmentally friendly process for the green synthesis of gold nanometre scale particles using the leaf extract from an indigenous Australian plant Eucalyptus macrocarpa as both the stabilising agent and the reducing agent. The synthesis process is straightforward, clean and non-toxic. It also has the advantages of being performed at room temperature and does not need complex processing equipment. Formation of the gold nanometre sized particles was confirmed and characterised by UV-visible spectroscopy, X-ray diffraction, transmission electron microscopy and field emission scanning electron microscopy. The antibacterial activity of the synthesised gold particles was also quantified using the sensitivity method of Kirby–Bauer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用澳大利亚本土植物巨桉叶提取物的绿色生物合成金纳米尺度板
在这项初步研究中,我们展示了一种绿色合成纳米级金颗粒的环保工艺,该工艺使用澳大利亚本土植物巨桉(Eucalyptus macrocarpa)的叶子提取物作为稳定剂和还原剂。合成过程简单、清洁、无毒。它还具有在室温下进行,不需要复杂的加工设备的优点。通过紫外可见光谱、x射线衍射、透射电子显微镜和场发射扫描电子显微镜对纳米级金颗粒的形成进行了证实和表征。利用Kirby-Bauer灵敏度法对合成金颗粒的抗菌活性进行了定量测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gold Bulletin
Gold Bulletin 工程技术-材料科学:综合
CiteScore
3.30
自引率
4.50%
发文量
0
审稿时长
3 months
期刊介绍: Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.
期刊最新文献
High power impulse magnetron sputtering (HiPIMS) prepared ultrathin gold film for plasmonic biosensor application Efficacy of Au versus Au–Pd nanoparticles towards synthesis of spirooxindoles via multicomponent reaction 18 Karat yellow gold single-tracks manufactured by Laser Powder Bed Fusion (LPBF): 1 064 nm and 515 nm laser comparison Microbial-mediated synthesis of gold nanoparticles—current insights and future vistas Drug release properties of amphoteric HES/p(AETAC-co-IA) hydrogels decorated with gold nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1