首页 > 最新文献

Gold Bulletin最新文献

英文 中文
High power impulse magnetron sputtering (HiPIMS) prepared ultrathin gold film for plasmonic biosensor application 高功率脉冲磁控溅射制备了用于等离子体生物传感器的超薄金膜
4区 工程技术 Q2 Chemistry Pub Date : 2023-11-09 DOI: 10.1007/s13404-023-00338-y
Sheng-Yang Huang, Ping-Yen Hsieh, Chi-Jen Chung, Chia-Man Chou, Ju-Liang He
{"title":"High power impulse magnetron sputtering (HiPIMS) prepared ultrathin gold film for plasmonic biosensor application","authors":"Sheng-Yang Huang, Ping-Yen Hsieh, Chi-Jen Chung, Chia-Man Chou, Ju-Liang He","doi":"10.1007/s13404-023-00338-y","DOIUrl":"https://doi.org/10.1007/s13404-023-00338-y","url":null,"abstract":"","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug release properties of amphoteric HES/p(AETAC-co-IA) hydrogels decorated with gold nanoparticles 纳米金修饰两性HES/p(AETAC-co-IA)水凝胶的释药性能
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-09-16 DOI: 10.1007/s13404-023-00334-2
Merve Ilkiner, Ozgur Ozay

In this study, amphoteric hydroxyethyl starch/p([2(acryloyloxy)ethyl]trimethylammonium chloride-co-itaconic acid (HES/p(AETAC-co-IA) hydrogels containing both cationic and anionic groups in their structure were synthesized by the redox polymerization method. The synthesized hydrogels were modified with gold nanoparticles, and nanocomposite hydrogels were obtained. The characterizations of the nanocomposite HES/p(AETAC-co-IA)@Au hydrogels prepared for biomedical applications were carried out by SEM, TEM, FT-IR, TGA, and XRD techniques and swelling tests in simulated biological environments. Hydrogels designed as drug carrier cargo materials were loaded with sodium diclofenac (NaDcF) and ibuprofen drugs, and their release properties were studied. The release mechanisms and release kinetics of the two drugs were studied. The release kinetics determined for the drug NaDcF is consistent with the Higuchi model, while the release kinetics determined for ibuprofen is consistent with the first-order model. In addition, the antibacterial and antifungal properties of the hydrogels were tested. It was found that the HES/p(AETAC-co-IA)@Au hydrogel was effective against gram-positive Staphylococcus aureus, gram-negative Pseudomonas aeruginosa, and the fungal species Candida albicans.

本研究采用氧化还原聚合方法合成了结构中同时含有阳离子和阴离子基团的两性羟乙基淀粉/p([2(丙烯酰氧基)乙基]三甲基氯化铵-衣康酸共聚物(HES/p(AETAC-co-IA)水凝胶。用金纳米粒子对合成的水凝胶进行改性,得到纳米复合水凝胶。通过SEM、TEM、FT-IR、TGA和XRD技术以及在模拟生物环境中的溶胀测试,对制备的用于生物医学应用的纳米复合HES/p(AETAC-co-IA)@Au水凝胶进行了表征。以双氯芬酸钠(NaDcF)和布洛芬为原料,设计了载药水凝胶,并对其释放性能进行了研究。研究了两种药物的释放机制和释放动力学。药物NaDcF的释放动力学与Higuchi模型一致,而布洛芬的释放动力学则与一阶模型一致。此外,还测试了水凝胶的抗菌和抗真菌性能。发现HES/p(AETAC-co-IA)@Au水凝胶对革兰氏阳性金黄色葡萄球菌、革兰氏阴性铜绿假单胞菌和真菌白色念珠菌有效。
{"title":"Drug release properties of amphoteric HES/p(AETAC-co-IA) hydrogels decorated with gold nanoparticles","authors":"Merve Ilkiner,&nbsp;Ozgur Ozay","doi":"10.1007/s13404-023-00334-2","DOIUrl":"10.1007/s13404-023-00334-2","url":null,"abstract":"<div><p>In this study, amphoteric hydroxyethyl starch/p([2(acryloyloxy)ethyl]trimethylammonium chloride-co-itaconic acid (HES/p(AETAC-co-IA) hydrogels containing both cationic and anionic groups in their structure were synthesized by the redox polymerization method. The synthesized hydrogels were modified with gold nanoparticles, and nanocomposite hydrogels were obtained. The characterizations of the nanocomposite HES/p(AETAC-co-IA)@Au hydrogels prepared for biomedical applications were carried out by SEM, TEM, FT-IR, TGA, and XRD techniques and swelling tests in simulated biological environments. Hydrogels designed as drug carrier cargo materials were loaded with sodium diclofenac (NaDcF) and ibuprofen drugs, and their release properties were studied. The release mechanisms and release kinetics of the two drugs were studied. The release kinetics determined for the drug NaDcF is consistent with the Higuchi model, while the release kinetics determined for ibuprofen is consistent with the first-order model. In addition, the antibacterial and antifungal properties of the hydrogels were tested. It was found that the HES/p(AETAC-co-IA)@Au hydrogel was effective against gram-positive <i>Staphylococcus aureus</i>, gram-negative <i>Pseudomonas aeruginosa</i>, and the fungal species <i>Candida albicans</i>.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excited-state gold catalyzed activation of inert C–Cl bonds 激发态金催化惰性C–Cl键的活化
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-09-04 DOI: 10.1007/s13404-023-00332-4
Xiaopeng Wu, Yibin Sun, Chen Mingqi, Yeli Fan

Chloroalkanes have richer structures and cheaper costs than iodide/brominated compounds, while rarely used as electrophilic reagents for constructing C(sp3)–C(sp3) bonds due to their low reduction potential and strong bond dissociation energy. Recently, a new catalytic strategy involving dinuclear gold complexes has overcome this limitation. The photoinduced gold-catalyzed mode initiated the C(sp3)–Cl electrophilic activation, lead to the divergent conversion of chloroalkanes as chloroalkyl, alkyl cation and carbene equivalent precursor of carbon chain propagation, and involved a novel mechanism of inner-sphere SET process between dinuclear gold complex catalyst and chloroalkane.

氯代烷烃比碘化物/溴化化合物具有更丰富的结构和更低的成本,但由于其低还原电位和强键离解能,很少用作构建C(sp3)–C(sp三)键的亲电试剂。最近,一种涉及双核金配合物的新催化策略克服了这一限制。光诱导金催化模式引发了C(sp3)–Cl的亲电活化,导致氯代烷烃以氯烷基、烷基阳离子和碳链传播的卡宾当量前体的发散转化,并涉及双核金络合物催化剂与氯代烷烃之间的内球SET过程的新机制。
{"title":"Excited-state gold catalyzed activation of inert C–Cl bonds","authors":"Xiaopeng Wu,&nbsp;Yibin Sun,&nbsp;Chen Mingqi,&nbsp;Yeli Fan","doi":"10.1007/s13404-023-00332-4","DOIUrl":"10.1007/s13404-023-00332-4","url":null,"abstract":"<div><p>Chloroalkanes have richer structures and cheaper costs than iodide/brominated compounds, while rarely used as electrophilic reagents for constructing C(sp<sup>3</sup>)–C(sp<sup>3</sup>) bonds due to their low reduction potential and strong bond dissociation energy. Recently, a new catalytic strategy involving dinuclear gold complexes has overcome this limitation. The photoinduced gold-catalyzed mode initiated the C(sp<sup>3</sup>)–Cl electrophilic activation, lead to the divergent conversion of chloroalkanes as chloroalkyl, alkyl cation and carbene equivalent precursor of carbon chain propagation, and involved a novel mechanism of inner-sphere SET process between dinuclear gold complex catalyst and chloroalkane.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-023-00332-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for cancer therapeutics: a systematic review 基于金纳米粒子的药物纳米载体作为癌症治疗的靶向药物递送系统平台:系统综述
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-08-03 DOI: 10.1007/s13404-023-00331-5
A’liyatur Rosyidah, Supavadee Kerdtoob, Wecka Imam Yudhistyra, Asef Wildan Munfadlila

Cancer was the world’s second major cause of death. Several treatments were available, including chemotherapy, radiotherapy, immunotherapy, and surgery. However, they are restricted due to their risk to normal cells, their ability to destroy the immune system, and conferring increased risk of secondary cancer development. Nanotechnology was extensively researched and used in cancer treatment because nanoparticles could play an essential role in drug delivery. Furthermore, nanoparticle drug delivery systems have been shown to help overcome cancer-related drug resistance. Gold nanoparticles have unique physical, chemical, and biological properties, making them suitable candidates for non-toxic drug carriers. Because of their nanorange size, surface modifications of gold nanoparticles could improve their stability, minimize nanoparticle aggregation, and enhance attachment to anti-cancer agents and target cells, further increasing their ability to penetrate cell membranes and reduce toxicity. This review aims to discuss the current research in targeting drug delivery for anti-cancer agents using gold nanoparticles. By conducting a literature search through the PubMed and Scopus database up to April 2022 using the term gold nanoparticles, targeted drug delivery, chemotherapy, gene therapy, and cancer, this review summarized report on the implementation of gold nanoparticles for targeted drug-delivery systems for cancer therapeutics. The targeting ligands included folic acid, aptamers, hyaluronic acid, glutathione, peptides, and antibodies. According to the findings of studies, implementing gold nanoparticles as nanocarriers significantly improves drug delivery of anti-cancer agents to cancer cells without affecting other untargeted cells. Enhanced cell uptake, increase in drug toxicity, inhibition of tumor growth, and selective drug target are also reported to be the advantages of gold nanoparticle-based targeted drug delivery carriers.

癌症是世界第二大死亡原因。有几种治疗方法,包括化疗、放疗、免疫疗法和手术。然而,由于它们对正常细胞的风险、破坏免疫系统的能力以及增加继发癌症发展的风险,它们受到限制。纳米技术在癌症治疗中得到了广泛的研究和应用,因为纳米颗粒可以在药物递送中发挥重要作用。此外,纳米粒子药物递送系统已被证明有助于克服癌症相关的耐药性。金纳米粒子具有独特的物理、化学和生物特性,是无毒药物载体的合适候选者。由于其纳米范围的大小,金纳米颗粒的表面修饰可以提高其稳定性,最大限度地减少纳米颗粒的聚集,并增强对抗癌剂和靶细胞的附着,进一步提高其穿透细胞膜的能力并降低毒性。本文旨在探讨利用金纳米粒子靶向给药抗癌药物的研究现状。截至2022年4月,通过使用金纳米粒子、靶向药物递送、化疗、基因治疗和癌症等术语对PubMed和Scopus数据库进行文献检索,本综述总结了金纳米粒子用于癌症治疗靶向药物递送系统的实施报告。靶向配体包括叶酸、适体、透明质酸、谷胱甘肽、肽和抗体。根据研究结果,在不影响其他非靶向细胞的情况下,将金纳米粒子作为纳米载体显著改善抗癌剂向癌症细胞的药物递送。据报道,增强细胞摄取、增加药物毒性、抑制肿瘤生长和选择性药物靶向也是基于金纳米粒子的靶向药物递送载体的优点。
{"title":"Gold nanoparticle-based drug nanocarriers as a targeted drug delivery system platform for cancer therapeutics: a systematic review","authors":"A’liyatur Rosyidah,&nbsp;Supavadee Kerdtoob,&nbsp;Wecka Imam Yudhistyra,&nbsp;Asef Wildan Munfadlila","doi":"10.1007/s13404-023-00331-5","DOIUrl":"10.1007/s13404-023-00331-5","url":null,"abstract":"<div><p>Cancer was the world’s second major cause of death. Several treatments were available, including chemotherapy, radiotherapy, immunotherapy, and surgery. However, they are restricted due to their risk to normal cells, their ability to destroy the immune system, and conferring increased risk of secondary cancer development. Nanotechnology was extensively researched and used in cancer treatment because nanoparticles could play an essential role in drug delivery. Furthermore, nanoparticle drug delivery systems have been shown to help overcome cancer-related drug resistance. Gold nanoparticles have unique physical, chemical, and biological properties, making them suitable candidates for non-toxic drug carriers. Because of their nanorange size, surface modifications of gold nanoparticles could improve their stability, minimize nanoparticle aggregation, and enhance attachment to anti-cancer agents and target cells, further increasing their ability to penetrate cell membranes and reduce toxicity. This review aims to discuss the current research in targeting drug delivery for anti-cancer agents using gold nanoparticles. By conducting a literature search through the PubMed and Scopus database up to April 2022 using the term gold nanoparticles, targeted drug delivery, chemotherapy, gene therapy, and cancer, this review summarized report on the implementation of gold nanoparticles for targeted drug-delivery systems for cancer therapeutics. The targeting ligands included folic acid, aptamers, hyaluronic acid, glutathione, peptides, and antibodies. According to the findings of studies, implementing gold nanoparticles as nanocarriers significantly improves drug delivery of anti-cancer agents to cancer cells without affecting other untargeted cells. Enhanced cell uptake, increase in drug toxicity, inhibition of tumor growth, and selective drug target are also reported to be the advantages of gold nanoparticle-based targeted drug delivery carriers.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41228896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy 更正:含有淀粉样蛋白-β的金纳米颗粒可降低阿尔茨海默病治疗和护理中神经细胞的细胞毒性
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-07-24 DOI: 10.1007/s13404-023-00330-6
Qing Hong, Xinchun Jin, Chenheng Zhou, Jiahui Shao
{"title":"Correction to: Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy","authors":"Qing Hong,&nbsp;Xinchun Jin,&nbsp;Chenheng Zhou,&nbsp;Jiahui Shao","doi":"10.1007/s13404-023-00330-6","DOIUrl":"10.1007/s13404-023-00330-6","url":null,"abstract":"","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy 具有淀粉样蛋白-β的金纳米粒子降低神经细胞的细胞毒性,用于阿尔茨海默病的治疗和护理
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-07-02 DOI: 10.1007/s13404-023-00327-1
Qing Hong, Xinchun Jin, Chenheng Zhou, Jiahui Shao

Protein oligomerization contributes to Alzheimer’s disease development (AD). A nanoparticle that can speed up the oligomerization of proteins is generally considered harmful. Gold nanoparticles (AuNPs) have been reported to be making headway in biological platforms, but they may also have the capacity to stimulate protein oligomerization. Our goal herein was to investigate the neurotoxicity and oligomerization of amyloid-β-1-42 (Aβ1-42) in the presence of AuNPs. The precipitation approach was used to create AuNPs, which were then analyzed using transmission electron microscopy (TEM), ThT, Congo red, and CD spectroscopy. The results demonstrated that the 50-nm-sized fabricated AuNPs guided acceleration in Aβ1-42. In addition, cytotoxicity studies on PC 12 cells showed that Aβ1-42 with AuNPs were less toxic than untreated oligomers Aβ1-42 in terms of inducing cell death, oxidative apoptosis, stress, and membrane leakage. In conclusion, our investigation sheds light on how AuNPs stimulate the development of cytotoxic oligomers by binding to proteins in Alzheimer’s disease.

蛋白质低聚会导致阿尔茨海默病的发展。可以加速蛋白质低聚的纳米粒子通常被认为是有害的。据报道,金纳米粒子(AuNPs)在生物平台上取得了进展,但它们也可能具有刺激蛋白质低聚的能力。我们的目的是研究在AuNPs存在下淀粉样蛋白-β1-42(Aβ1-42)的神经毒性和低聚作用。沉淀方法用于产生AuNP,然后使用透射电子显微镜(TEM)、ThT、刚果红和CD光谱对其进行分析。结果表明,50nm尺寸的AuNPs在Aβ1-42中引导加速度。此外,对PC12细胞的细胞毒性研究表明,在诱导细胞死亡、氧化性凋亡、应激和膜渗漏方面,具有AuNPs的Aβ1-42比未处理的低聚物Aβ1-41毒性更小。总之,我们的研究揭示了AuNPs如何通过与阿尔茨海默病中的蛋白质结合来刺激细胞毒性低聚物的发育。
{"title":"Gold nanoparticles with amyloid-β reduce neurocell cytotoxicity for the treatment and care of Alzheimer’s disease therapy","authors":"Qing Hong,&nbsp;Xinchun Jin,&nbsp;Chenheng Zhou,&nbsp;Jiahui Shao","doi":"10.1007/s13404-023-00327-1","DOIUrl":"10.1007/s13404-023-00327-1","url":null,"abstract":"<div><p>Protein oligomerization contributes to Alzheimer’s disease development (AD). A nanoparticle that can speed up the oligomerization of proteins is generally considered harmful. Gold nanoparticles (AuNPs) have been reported to be making headway in biological platforms, but they may also have the capacity to stimulate protein oligomerization. Our goal herein was to investigate the neurotoxicity and oligomerization of amyloid-β-1-42 (Aβ<sub>1-42</sub>) in the presence of AuNPs. The precipitation approach was used to create AuNPs, which were then analyzed using transmission electron microscopy (TEM), ThT, Congo red, and CD spectroscopy. The results demonstrated that the 50-nm-sized fabricated AuNPs guided acceleration in Aβ<sub>1-42</sub>. In addition, cytotoxicity studies on PC 12 cells showed that Aβ<sub>1-42</sub> with AuNPs were less toxic than untreated oligomers Aβ<sub>1-42</sub> in terms of inducing cell death, oxidative apoptosis, stress, and membrane leakage. In conclusion, our investigation sheds light on how AuNPs stimulate the development of cytotoxic oligomers by binding to proteins in Alzheimer’s disease.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical sensing based on Au particle@SiO2@CQDs nanocomposites 基于Au的电化学传感particle@SiO2@CQDs纳米复合材料
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-06-29 DOI: 10.1007/s13404-023-00329-z
Huiqin Li, Lihua Wu, Hui Lei, Cui Deng, Fan Huang, Lijun Ren, Hongge Zhang, Weiwei Zhao, Qian Zhao

In this study, carbon quantum dots (CQDs) were first synthesized using a hydrothermal method, and then, Au@SiO2 core-shell nanomaterials were synthesized using layer-by-layer assembly. CQDs were adsorbed on the surface of Au@SiO2 nanoparticles through self-assembly to form Au@SiO2/CQDs nanocomposite materials. Transmission electron microscopy and X-ray diffraction were used to characterize the size, shape, element composition, and structure of nanocomposites; ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to analyze the optical properties of nanocomposites. The results show that Au@SiO2/CQD nanomaterials have a core-shell structure with good morphology and exhibit excellent luminescence characteristics. The electrochemical performance of nanocomposites was characterized using electrochemical means, and a hydrogen peroxide sensor was constructed for the sensitive detection of hydrogen peroxide, thus realizing the rapid and sensitive detection of hydrogen peroxide at levels as low as 0.2 mM. The electrode GCE modified with Au@SiO2/CQDs exhibits good selectivity and stability in the detection of hydrogen peroxide.

本研究首先采用水热法合成了碳量子点(CQDs),Au@SiO2采用逐层组装的方法合成了核壳纳米材料。CQDs吸附在Au@SiO2纳米颗粒通过自组装形成Au@SiO2/CQDs纳米复合材料。利用透射电子显微镜和X射线衍射对纳米复合材料的尺寸、形状、元素组成和结构进行了表征;利用紫外-可见吸收光谱和荧光光谱对纳米复合材料的光学性能进行了分析。结果表明:Au@SiO2/CQD纳米材料具有良好形貌的核壳结构,并表现出优异的发光特性。利用电化学方法对纳米复合材料的电化学性能进行了表征,并构建了用于过氧化氢灵敏检测的过氧化氢传感器,从而实现了对低至0.2mM水平的过氧化氢的快速灵敏检测Au@SiO2/CQDs在过氧化氢的检测中表现出良好的选择性和稳定性。
{"title":"Electrochemical sensing based on Au particle@SiO2@CQDs nanocomposites","authors":"Huiqin Li,&nbsp;Lihua Wu,&nbsp;Hui Lei,&nbsp;Cui Deng,&nbsp;Fan Huang,&nbsp;Lijun Ren,&nbsp;Hongge Zhang,&nbsp;Weiwei Zhao,&nbsp;Qian Zhao","doi":"10.1007/s13404-023-00329-z","DOIUrl":"10.1007/s13404-023-00329-z","url":null,"abstract":"<div><p>In this study, carbon quantum dots (CQDs) were first synthesized using a hydrothermal method, and then, Au@SiO<sub>2</sub> core-shell nanomaterials were synthesized using layer-by-layer assembly. CQDs were adsorbed on the surface of Au@SiO<sub>2</sub> nanoparticles through self-assembly to form Au@SiO<sub>2</sub>/CQDs nanocomposite materials. Transmission electron microscopy and X-ray diffraction were used to characterize the size, shape, element composition, and structure of nanocomposites; ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy were used to analyze the optical properties of nanocomposites. The results show that Au@SiO<sub>2</sub>/CQD nanomaterials have a core-shell structure with good morphology and exhibit excellent luminescence characteristics. The electrochemical performance of nanocomposites was characterized using electrochemical means, and a hydrogen peroxide sensor was constructed for the sensitive detection of hydrogen peroxide, thus realizing the rapid and sensitive detection of hydrogen peroxide at levels as low as 0.2 mM. The electrode GCE modified with Au@SiO<sub>2</sub>/CQDs exhibits good selectivity and stability in the detection of hydrogen peroxide.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA using gold nanoprobes 金纳米探针检测铜绿假单胞菌和鲍曼不动杆菌基因组DNA
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-04-24 DOI: 10.1007/s13404-023-00326-2
Marjan Bagherinajafabad, Hassan Bardania, Elham Moazamian, Seyed Sajjad Khoramrooz

Conventional techniques for microbial detection are time-consuming, expensive, and unsuitable. The use of nanoparticles is a valuable technique for the detection of bacterial as well as viral DNA. Gold nanoparticles (gold NPs) have been used as a promising detector for rapid and low-cost identification of microbes with high sensitivity. In this study, gold nanoparticles-probes were used to identify Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA. Thiol-functionalized probes were attached to gold NPs. Hybridization of the probe with the amplified product of Oprl and glta genes resulted in accumulation of gold nanoparticles in a cross-linked manner, caused a color change of the reaction mixture, which indicated the presence of Pseudomonas aeruginosa and Acinetobacter baumannii in the sample. To study the sensitivity, the polymerase chain reaction product with different bacteria was used, and results were compared. The gold nanoparticle-based colorimetric assay can be used as a direct and rapid method with high sensitivity for specific identification of these pathogens in clinical and food samples.

传统的微生物检测技术耗时、昂贵且不适用。纳米颗粒的使用是检测细菌和病毒DNA的一种有价值的技术。金纳米粒子(金纳米粒子)已被用作一种有前途的检测器,用于快速、低成本、高灵敏度的微生物识别。在本研究中,金纳米粒子探针被用于鉴定铜绿假单胞菌和鲍曼不动杆菌的基因组DNA。硫醇功能化的探针连接到金纳米粒子上。探针与Oprl和glta基因的扩增产物的杂交导致金纳米颗粒以交联的方式积累,导致反应混合物的颜色变化,这表明样品中存在铜绿假单胞菌和鲍曼不动杆菌。为了研究敏感性,使用不同细菌的聚合酶链式反应产物,并对结果进行比较。基于金纳米粒子的比色测定法可作为一种直接、快速、高灵敏度的方法,用于临床和食品样品中这些病原体的特异性鉴定。
{"title":"Detection of Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA using gold nanoprobes","authors":"Marjan Bagherinajafabad,&nbsp;Hassan Bardania,&nbsp;Elham Moazamian,&nbsp;Seyed Sajjad Khoramrooz","doi":"10.1007/s13404-023-00326-2","DOIUrl":"10.1007/s13404-023-00326-2","url":null,"abstract":"<div><p>Conventional techniques for microbial detection are time-consuming, expensive, and unsuitable. The use of nanoparticles is a valuable technique for the detection of bacterial as well as viral DNA. Gold nanoparticles (gold NPs) have been used as a promising detector for rapid and low-cost identification of microbes with high sensitivity. In this study, gold nanoparticles-probes were used to identify <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> genomic DNA. Thiol-functionalized probes were attached to gold NPs. Hybridization of the probe with the amplified product of Oprl and glta genes resulted in accumulation of gold nanoparticles in a cross-linked manner, caused a color change of the reaction mixture, which indicated the presence of <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> in the sample. To study the sensitivity, the polymerase chain reaction product with different bacteria was used, and results were compared. The gold nanoparticle-based colorimetric assay can be used as a direct and rapid method with high sensitivity for specific identification of these pathogens in clinical and food samples.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-023-00326-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy transfer in gold photocatalysis 金光催化中的能量转移
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-08-09 DOI: 10.1007/s13404-022-00321-z
Siyu Xia, Jin Xie

Over the past decade, the use of gold complex for photocatalyzed transformations has gained great attention. Within a number of photocatalzed reactions, the mode of energy transfer (EnT) is gradually disclosed, which opens a creative window for gold chemistry. This highlight covers several recent achievements of gold photocatalysis involving EnT process.

近十年来,利用金配合物进行光催化转化得到了广泛的关注。在许多光催化反应中,能量转移模式(EnT)逐渐被揭示,为金化学打开了一扇创造性的窗口。本重点介绍了近年来涉及EnT过程的金光催化的一些成果。
{"title":"Energy transfer in gold photocatalysis","authors":"Siyu Xia,&nbsp;Jin Xie","doi":"10.1007/s13404-022-00321-z","DOIUrl":"10.1007/s13404-022-00321-z","url":null,"abstract":"<div><p>Over the past decade, the use of gold complex for photocatalyzed transformations has gained great attention. Within a number of photocatalzed reactions, the mode of energy transfer (EnT) is gradually disclosed, which opens a creative window for gold chemistry. This highlight covers several recent achievements of gold photocatalysis involving EnT process.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4375255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Post-synthesis heating, a key step to tune the LPR band of gold nanorods covered with CTAB or embedded in a silica shell 合成后加热,这是调整被CTAB覆盖或嵌入硅壳的金纳米棒的LPR带的关键步骤
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-08-08 DOI: 10.1007/s13404-022-00320-0
Angela Candreva, Francesco Parisi, Giuseppe Di Maio, Francesca Scarpelli, Iolinda Aiello, Nicolas Godbert, Massimo La Deda

The transitioning of nanotechnology from laboratory to industrial-scale manufacturing poses various challenges in nanoparticle realization. From this perspective, beside the conventional synthetic procedure, based on the seed-mediated growth approach, a reshaping thermal strategy has been investigated to improve the control on gold nanorods aspect ratio, with the aim to point out a potential and encouraging way to better manage the scalability and reproducibility of nanoparticles. For this purpose, nanorods covered with CTAB and nanorods enclosed within a silica shell of tuned thickness have been synthesized and submitted to a post-thermal treatment at various temperatures, up to 300 °C for CTAB recovered gold nanorods (AuNR@CTAB), and up to 500 °C for silica-shell embedded gold nanorods (AuNR@SiO2). For AuNR@CTAB, through accurate temperature control, the longitudinal plasmonic band can be moved very close to the transversal one upon slight reduction of their length. Instead, for AuNR@SiO2, owing to the fully inorganic shell, a higher temperature of treatment can be reached leading to the possibility of reshaping the nanorods into spheres without the observation of any by-products.

纳米技术从实验室到工业规模制造的转变对纳米颗粒的实现提出了各种挑战。从这个角度来看,除了传统的合成方法外,基于种子介导生长的方法,研究了一种重塑热策略来改善对金纳米棒长径比的控制,旨在指出一种潜在的和令人兴奋的方法来更好地管理纳米颗粒的可扩展性和可重复性。为此,已经合成了覆盖CTAB的纳米棒和包裹在厚度可调的硅壳内的纳米棒,并在不同温度下进行后热处理,CTAB回收的金纳米棒最高可达300°C (AuNR@CTAB),硅壳嵌入的金纳米棒最高可达500°C (AuNR@SiO2)。对于AuNR@CTAB,通过精确的温度控制,纵向等离子体能带可以在稍微减少其长度的情况下非常接近横向等离子体能带。相反,对于AuNR@SiO2,由于完全无机的外壳,可以达到更高的处理温度,从而有可能将纳米棒重塑成球体,而不会观察到任何副产物。
{"title":"Post-synthesis heating, a key step to tune the LPR band of gold nanorods covered with CTAB or embedded in a silica shell","authors":"Angela Candreva,&nbsp;Francesco Parisi,&nbsp;Giuseppe Di Maio,&nbsp;Francesca Scarpelli,&nbsp;Iolinda Aiello,&nbsp;Nicolas Godbert,&nbsp;Massimo La Deda","doi":"10.1007/s13404-022-00320-0","DOIUrl":"10.1007/s13404-022-00320-0","url":null,"abstract":"<div><p>The transitioning of nanotechnology from laboratory to industrial-scale manufacturing poses various challenges in nanoparticle realization. From this perspective, beside the conventional synthetic procedure, based on the seed-mediated growth approach, a reshaping thermal strategy has been investigated to improve the control on gold nanorods aspect ratio, with the aim to point out a potential and encouraging way to better manage the scalability and reproducibility of nanoparticles. For this purpose, nanorods covered with CTAB and nanorods enclosed within a silica shell of tuned thickness have been synthesized and submitted to a post-thermal treatment at various temperatures, up to 300 °C for CTAB recovered gold nanorods (AuNR@CTAB), and up to 500 °C for silica-shell embedded gold nanorods (AuNR@SiO<sub>2</sub>). For AuNR@CTAB, through accurate temperature control, the longitudinal plasmonic band can be moved very close to the transversal one upon slight reduction of their length. Instead, for AuNR@SiO<sub>2</sub>, owing to the fully inorganic shell, a higher temperature of treatment can be reached leading to the possibility of reshaping the nanorods into spheres without the observation of any by-products.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-022-00320-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4326383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Gold Bulletin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1