{"title":"POSTTRANSLATIONAL ASSEMBLY OF PHOTOSYNTHETIC METALLOPROTEINS.","authors":"Sabeeha Merchant, Beth Welty Dreyfuss","doi":"10.1146/annurev.arplant.49.1.25","DOIUrl":null,"url":null,"abstract":"<p><p>The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"25-51"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.25","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85
Abstract
The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.