Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.499
R. Ratcliffe, Y. Shachar-Hill
Analytical methods for probing plant metabolism are taking on new significance in the era of functional genomics and metabolic engineering. Among the available methods, nuclear magnetic resonance (NMR) spectroscopy is a technique that can provide insights into the integration and regulation of plant metabolism through a combination of in vivo and in vitro measurements. Thus NMR can be used to identify, quantify, and localize metabolites, to define the intracellular environment, and to explore pathways and their operation. We review these applications and their significance from a metabolic perspective. Topics of current interest include applications of NMR to metabolic flux analysis, metabolite profiling, and metabolite imaging. These and other areas are discussed in relation to NMR investigations of intermediary carbon and nitrogen metabolism. We conclude that metabolic NMR has a continuing role to play in the development of a quantitative understanding of plant metabolism and in the characterization of metabolic phenotypes.
{"title":"PROBING PLANT METABOLISM WITH NMR.","authors":"R. Ratcliffe, Y. Shachar-Hill","doi":"10.1146/ANNUREV.ARPLANT.52.1.499","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.499","url":null,"abstract":"Analytical methods for probing plant metabolism are taking on new significance in the era of functional genomics and metabolic engineering. Among the available methods, nuclear magnetic resonance (NMR) spectroscopy is a technique that can provide insights into the integration and regulation of plant metabolism through a combination of in vivo and in vitro measurements. Thus NMR can be used to identify, quantify, and localize metabolites, to define the intracellular environment, and to explore pathways and their operation. We review these applications and their significance from a metabolic perspective. Topics of current interest include applications of NMR to metabolic flux analysis, metabolite profiling, and metabolite imaging. These and other areas are discussed in relation to NMR investigations of intermediary carbon and nitrogen metabolism. We conclude that metabolic NMR has a continuing role to play in the development of a quantitative understanding of plant metabolism and in the characterization of metabolic phenotypes.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"499-526"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.499","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.363
E. H. Harris
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
{"title":"CHLAMYDOMONAS AS A MODEL ORGANISM.","authors":"E. H. Harris","doi":"10.1146/ANNUREV.ARPLANT.52.1.363","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.363","url":null,"abstract":"The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"363-406"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.363","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64259900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.407
T. Sharkey, Sansun Yeh
Very large amounts of isoprene are emitted from vegetation, especially from mosses, ferns, and trees. This hydrocarbon flux to the atmosphere, roughly equal to the flux of methane, has a large effect on the oxidizing potential of the atmosphere. Isoprene emission results from de novo synthesis by the deoxyxylulose phosphate/methyl erythritol 4-phosphate pathway in plastids. Dimethylallyl pyrophosphate made by this pathway is converted to isoprene by isoprene synthase. Isoprene synthase activity in plants has a high pH optimum and requirement for Mg2+ that is consistent with its location inside chloroplasts. Isoprene emission costs the plant significant amounts of carbon, ATP, and reducing power. Researchers hypothesize that plants benefit from isoprene emission because it helps photosynthesis recover from short high-temperature episodes. The evolution of isoprene emission may have been important in allowing plants to survive the rapid temperature changes that can occur in air because of the very low heat capacity of isoprene relative to water.
{"title":"ISOPRENE EMISSION FROM PLANTS.","authors":"T. Sharkey, Sansun Yeh","doi":"10.1146/ANNUREV.ARPLANT.52.1.407","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.407","url":null,"abstract":"Very large amounts of isoprene are emitted from vegetation, especially from mosses, ferns, and trees. This hydrocarbon flux to the atmosphere, roughly equal to the flux of methane, has a large effect on the oxidizing potential of the atmosphere. Isoprene emission results from de novo synthesis by the deoxyxylulose phosphate/methyl erythritol 4-phosphate pathway in plastids. Dimethylallyl pyrophosphate made by this pathway is converted to isoprene by isoprene synthase. Isoprene synthase activity in plants has a high pH optimum and requirement for Mg2+ that is consistent with its location inside chloroplasts. Isoprene emission costs the plant significant amounts of carbon, ATP, and reducing power. Researchers hypothesize that plants benefit from isoprene emission because it helps photosynthesis recover from short high-temperature episodes. The evolution of isoprene emission may have been important in allowing plants to survive the rapid temperature changes that can occur in air because of the very low heat capacity of isoprene relative to water.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"10 1","pages":"407-436"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.407","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64259747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.297
M. Matsuoka, R. Furbank, H. Fukayama, M. Miyao
The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C3 plants that assimilate atmospheric CO2 directly through the C3 photosynthetic pathway. C4 plants such as maize and sugarcane evolved from C3 plants, acquiring the C4 photosynthetic pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of C4 photosynthesis over the past several years. It has deepened our understanding of the mechanism of C4 photosynthesis and provided valuable information as to the evolution of the C4 photosynthetic genes. It also has enabled us to express enzymes involved in the C4 pathway at high levels and in desired locations in the leaves of C3 plants for engineering of primary carbon metabolism.
{"title":"MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS.","authors":"M. Matsuoka, R. Furbank, H. Fukayama, M. Miyao","doi":"10.1146/ANNUREV.ARPLANT.52.1.297","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.297","url":null,"abstract":"The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C3 plants that assimilate atmospheric CO2 directly through the C3 photosynthetic pathway. C4 plants such as maize and sugarcane evolved from C3 plants, acquiring the C4 photosynthetic pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of C4 photosynthesis over the past several years. It has deepened our understanding of the mechanism of C4 photosynthesis and provided valuable information as to the evolution of the C4 photosynthetic genes. It also has enabled us to express enzymes involved in the C4 pathway at high levels and in desired locations in the leaves of C3 plants for engineering of primary carbon metabolism.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"297-314"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64259540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.627
J. Schroeder, G. J. Allen, V. Hugouvieux, J. Kwak, D. Waner
Guard cells surround stomatal pores in the epidermis of plant leaves and stems. Stomatal pore opening is essential for CO2 influx into leaves for photosynthetic carbon fixation. In exchange, plants lose over 95% of their water via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate hormonal stimuli, light signals, water status, CO2, temperature, and other environmental conditions to modulate stomatal apertures for regulation of gas exchange and plant survival under diverse conditions. Stomatal guard cells have become a highly developed model system for characterizing early signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. In this review we focus on recent advances in understanding signal transduction mechanisms in guard cells.
{"title":"GUARD CELL SIGNAL TRANSDUCTION.","authors":"J. Schroeder, G. J. Allen, V. Hugouvieux, J. Kwak, D. Waner","doi":"10.1146/ANNUREV.ARPLANT.52.1.627","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.627","url":null,"abstract":"Guard cells surround stomatal pores in the epidermis of plant leaves and stems. Stomatal pore opening is essential for CO2 influx into leaves for photosynthetic carbon fixation. In exchange, plants lose over 95% of their water via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate hormonal stimuli, light signals, water status, CO2, temperature, and other environmental conditions to modulate stomatal apertures for regulation of gas exchange and plant survival under diverse conditions. Stomatal guard cells have become a highly developed model system for characterizing early signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. In this review we focus on recent advances in understanding signal transduction mechanisms in guard cells.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"627-658"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.627","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.139
C. R. McClung
Circadian rhythms, endogenous rhythms with periods of approximately 24 h, are widespread in nature. Although plants have provided many examples of rhythmic outputs and our understanding of photoreceptors of circadian input pathways is well advanced, studies with plants have lagged in the identification of components of the central circadian oscillator. Nonetheless, genetic and molecular biological studies, primarily in Arabidopsis, have begun to identify the components of plant circadian systems at an accelerating pace. There also is accumulating evidence that plants and other organisms house multiple circadian clocks both in different tissues and, quite probably, within individual cells, providing unanticipated complexity in circadian systems.
{"title":"CIRCADIAN RHYTHMS IN PLANTS.","authors":"C. R. McClung","doi":"10.1146/ANNUREV.ARPLANT.52.1.139","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.139","url":null,"abstract":"Circadian rhythms, endogenous rhythms with periods of approximately 24 h, are widespread in nature. Although plants have provided many examples of rhythmic outputs and our understanding of photoreceptors of circadian input pathways is well advanced, studies with plants have lagged in the identification of components of the central circadian oscillator. Nonetheless, genetic and molecular biological studies, primarily in Arabidopsis, have begun to identify the components of plant circadian systems at an accelerating pace. There also is accumulating evidence that plants and other organisms house multiple circadian clocks both in different tissues and, quite probably, within individual cells, providing unanticipated complexity in circadian systems.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"139-162"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64259066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.315
K. Osteryoung, R. McAndrew
Plastid division is essential for the maintenance of plastid populations in cells undergoing division and for the accumulation of large chloroplast numbers in photosynthetic tissues. Although the mechanisms mediating plastid division are poorly understood, ultrastructural studies imply this process is accomplished by a dynamic macromolecular machine organized into ring structures at the plastid midpoint. A key component of the engine that powers this machine is the motor-like protein FtsZ, a cytoskeletal GTPase of endosymbiotic origin that forms a ring at the plastid division site, similar to the function of its prokaryotic relatives in bacterial cytokinesis. This review considers the phylogenetic distribution and structural properties of two recently identified plant FtsZ protein families in the context of their distinct roles in plastid division and describes current evidence regarding factors that govern their placement at the division site. Because of their evolutionary and mechanistic relationship, the process of bacterial cell division provides a valuable, though incomplete, paradigm for understanding plastid division in plants.
{"title":"THE PLASTID DIVISION MACHINE.","authors":"K. Osteryoung, R. McAndrew","doi":"10.1146/ANNUREV.ARPLANT.52.1.315","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.315","url":null,"abstract":"Plastid division is essential for the maintenance of plastid populations in cells undergoing division and for the accumulation of large chloroplast numbers in photosynthetic tissues. Although the mechanisms mediating plastid division are poorly understood, ultrastructural studies imply this process is accomplished by a dynamic macromolecular machine organized into ring structures at the plastid midpoint. A key component of the engine that powers this machine is the motor-like protein FtsZ, a cytoskeletal GTPase of endosymbiotic origin that forms a ring at the plastid division site, similar to the function of its prokaryotic relatives in bacterial cytokinesis. This review considers the phylogenetic distribution and structural properties of two recently identified plant FtsZ protein families in the context of their distinct roles in plastid division and describes current evidence regarding factors that govern their placement at the division site. Because of their evolutionary and mechanistic relationship, the process of bacterial cell division provides a valuable, though incomplete, paradigm for understanding plastid division in plants.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"315-333"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.689
Susan C. Trapp, R. Croteau
Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin, a complex mixture of mono-, sesqui-, and diterpenoids that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects, from host selection to pheromone signaling and tritrophic level interactions. The biochemistry of oleoresin terpenoids is reviewed, and the regulation of production of this unusual plant secretion is described in the context of bark beetle infestation dynamics with respect to the function of the turpentine and rosin components. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest biotechnology.
{"title":"DEFENSIVE RESIN BIOSYNTHESIS IN CONIFERS.","authors":"Susan C. Trapp, R. Croteau","doi":"10.1146/ANNUREV.ARPLANT.52.1.689","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.689","url":null,"abstract":"Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin, a complex mixture of mono-, sesqui-, and diterpenoids that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects, from host selection to pheromone signaling and tritrophic level interactions. The biochemistry of oleoresin terpenoids is reviewed, and the regulation of production of this unusual plant secretion is described in the context of bark beetle infestation dynamics with respect to the function of the turpentine and rosin components. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest biotechnology.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"689-724"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-28DOI: 10.1146/ANNUREV.ARPLANT.52.1.89
D. Mok, M. Mok
Cytokinins are structurally diverse and biologically versatile. The chemistry and physiology of cytokinin have been studied extensively, but the regulation of cytokinin biosynthesis, metabolism, and signal transduction is still largely undefined. Recent advances in cloning metabolic genes and identifying putative receptors portend more rapid progress based on molecular techniques. This review centers on cytokinin metabolism with connecting discussions on biosynthesis and signal transduction. Important findings are summarized with emphasis on metabolic enzymes and genes. Based on the information generated to date, implications and future research directions are presented.
{"title":"CYTOKININ METABOLISM AND ACTION.","authors":"D. Mok, M. Mok","doi":"10.1146/ANNUREV.ARPLANT.52.1.89","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.89","url":null,"abstract":"Cytokinins are structurally diverse and biologically versatile. The chemistry and physiology of cytokinin have been studied extensively, but the regulation of cytokinin biosynthesis, metabolism, and signal transduction is still largely undefined. Recent advances in cloning metabolic genes and identifying putative receptors portend more rapid progress based on molecular techniques. This review centers on cytokinin metabolism with connecting discussions on biosynthesis and signal transduction. Important findings are summarized with emphasis on metabolic enzymes and genes. Based on the information generated to date, implications and future research directions are presented.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"89-118"},"PeriodicalIF":0.0,"publicationDate":"2003-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.89","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2001-06-01DOI: 10.1146/ANNUREV.ARPLANT.52.1.527
P. Ryan, E. Delhaize, D. Jones
The rhizosphere is the zone of soil immediately surrounding plant roots that is modified by root activity. In this critical zone, plants perceive and respond to their environment. As a consequence of normal growth and development, a large range of organic and inorganic substances are exchanged between the root and soil, which inevitably leads to changes in the biochemical and physical properties of the rhizosphere. Plants also modify their rhizosphere in response to certain environmental signals and stresses. Organic anions are commonly detected in this region, and their exudation from plant roots has now been associated with nutrient deficiencies and inorganic ion stresses. This review summarizes recent developments in the understanding of the function, mechanism, and regulation of organic anion exudation from roots. The benefits that plants derive from the presence of organic anions in the rhizosphere are described and the potential for biotechnology to increase organic anion exudation is highlighted.
{"title":"FUNCTION AND MECHANISM OF ORGANIC ANION EXUDATION FROM PLANT ROOTS.","authors":"P. Ryan, E. Delhaize, D. Jones","doi":"10.1146/ANNUREV.ARPLANT.52.1.527","DOIUrl":"https://doi.org/10.1146/ANNUREV.ARPLANT.52.1.527","url":null,"abstract":"The rhizosphere is the zone of soil immediately surrounding plant roots that is modified by root activity. In this critical zone, plants perceive and respond to their environment. As a consequence of normal growth and development, a large range of organic and inorganic substances are exchanged between the root and soil, which inevitably leads to changes in the biochemical and physical properties of the rhizosphere. Plants also modify their rhizosphere in response to certain environmental signals and stresses. Organic anions are commonly detected in this region, and their exudation from plant roots has now been associated with nutrient deficiencies and inorganic ion stresses. This review summarizes recent developments in the understanding of the function, mechanism, and regulation of organic anion exudation from roots. The benefits that plants derive from the presence of organic anions in the rhizosphere are described and the potential for biotechnology to increase organic anion exudation is highlighted.","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"52 1","pages":"527-560"},"PeriodicalIF":0.0,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV.ARPLANT.52.1.527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64260527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}