CRASSULACEAN ACID METABOLISM: Molecular Genetics.

John C. Cushman, Hans J. Bohnert
{"title":"CRASSULACEAN ACID METABOLISM: Molecular Genetics.","authors":"John C. Cushman,&nbsp;Hans J. Bohnert","doi":"10.1146/annurev.arplant.50.1.305","DOIUrl":null,"url":null,"abstract":"<p><p>Crassulacean acid metabolism (CAM) is an adaptation of photosynthesis to limited availability of water or CO2. CAM is characterized by nocturnal CO2 fixation via the cytosolic enzyme PEP carboxylase (PEPC), formation of PEP by glycolysis, malic acid accumulation in the vacuole, daytime decarboxylation of malate and CO2 re-assimilation via ribulose-1,5-bisphosphate carboxylase (RUBISCO), and regeneration of storage carbohydrates from pyruvate and/or PEP by gluconeogenesis. Within this basic framework, the pathway exhibits an extraordinary range of metabolic plasticity governed by environmental, developmental, tissue-specific, hormonal, and circadian cues. Characterization of genes encoding key CAM enzymes has shown that a combination of transcriptional, posttranscriptional, translational, and posttranslational regulatory events govern the expression of the pathway. Recently, this information has improved our ability to dissect the regulatory and signaling events that mediate the expression and operation of the pathway. Molecular analysis and sequence information have also provided new ways of assessing the evolutionary origins of CAM. Genetic and physiological analysis of transgenic plants currently under development will improve our further understanding of the molecular genetics of CAM.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":" ","pages":"305-332"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.50.1.305","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.50.1.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

Crassulacean acid metabolism (CAM) is an adaptation of photosynthesis to limited availability of water or CO2. CAM is characterized by nocturnal CO2 fixation via the cytosolic enzyme PEP carboxylase (PEPC), formation of PEP by glycolysis, malic acid accumulation in the vacuole, daytime decarboxylation of malate and CO2 re-assimilation via ribulose-1,5-bisphosphate carboxylase (RUBISCO), and regeneration of storage carbohydrates from pyruvate and/or PEP by gluconeogenesis. Within this basic framework, the pathway exhibits an extraordinary range of metabolic plasticity governed by environmental, developmental, tissue-specific, hormonal, and circadian cues. Characterization of genes encoding key CAM enzymes has shown that a combination of transcriptional, posttranscriptional, translational, and posttranslational regulatory events govern the expression of the pathway. Recently, this information has improved our ability to dissect the regulatory and signaling events that mediate the expression and operation of the pathway. Molecular analysis and sequence information have also provided new ways of assessing the evolutionary origins of CAM. Genetic and physiological analysis of transgenic plants currently under development will improve our further understanding of the molecular genetics of CAM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天冬氨酸代谢:分子遗传学。
天冬酸代谢(CAM)是光合作用对有限的水分或二氧化碳的适应。CAM的特征是通过细胞质酶PEP羧化酶(PEPC)在夜间固定二氧化碳,通过糖酵解形成PEP,苹果酸在液泡中积累,白天苹果酸脱羧和二氧化碳通过核酮糖-1,5-二磷酸羧化酶(RUBISCO)再同化,以及通过糖异生从丙酮酸和/或PEP中再生储存碳水化合物。在这一基本框架内,该通路表现出由环境、发育、组织特异性、激素和昼夜节律线索控制的非凡的代谢可塑性。编码关键CAM酶的基因表征表明,转录、转录后、翻译和翻译后调控事件的组合控制了该途径的表达。最近,这些信息提高了我们剖析介导该通路表达和操作的调控和信号事件的能力。分子分析和序列信息也为CAM的进化起源提供了新的途径。目前正在开发的转基因植物的遗传和生理分析将有助于我们进一步了解CAM的分子遗传学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CIRCADIAN RHYTHMS IN PLANTS. MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS. ISOPRENE EMISSION FROM PLANTS. CHLAMYDOMONAS AS A MODEL ORGANISM. THE PLASTID DIVISION MACHINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1