DESATURATION AND RELATED MODIFICATIONS OF FATTY ACIDS1.

John Shanklin, Edgar B. Cahoon
{"title":"DESATURATION AND RELATED MODIFICATIONS OF FATTY ACIDS1.","authors":"John Shanklin,&nbsp;Edgar B. Cahoon","doi":"10.1146/annurev.arplant.49.1.611","DOIUrl":null,"url":null,"abstract":"<p><p>Desaturation of a fatty acid first involves the enzymatic removal of a hydrogen from a methylene group in an acyl chain, a highly energy-demanding step that requires an activated oxygen intermediate. Two types of desaturases have been identified, one soluble and the other membrane-bound, that have different consensus motifs. Database searching for these motifs reveals that these enzymes belong to two distinct multifunctional classes, each of which includes desaturases, hydroxylases, and epoxidases that act on fatty acids or other substrates. The soluble class has a consensus motif consisting of carboxylates and histidines that coordinate an active site diiron cluster. The integral membrane class contains a different consensus motif composed of histidines. Biochemical and structural similarities between the integral membrane enzymes suggest that this class also uses a diiron cluster for catalysis. Soluble and membrane enzymes have been successfully re-engineered for substrate specificity and reaction outcome. It is anticipated that rational design of these enzymes will result in new and desired activities that may form the basis for improved oil crops.</p>","PeriodicalId":80493,"journal":{"name":"Annual review of plant physiology and plant molecular biology","volume":"49 ","pages":"611-641"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev.arplant.49.1.611","citationCount":"814","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant physiology and plant molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev.arplant.49.1.611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 814

Abstract

Desaturation of a fatty acid first involves the enzymatic removal of a hydrogen from a methylene group in an acyl chain, a highly energy-demanding step that requires an activated oxygen intermediate. Two types of desaturases have been identified, one soluble and the other membrane-bound, that have different consensus motifs. Database searching for these motifs reveals that these enzymes belong to two distinct multifunctional classes, each of which includes desaturases, hydroxylases, and epoxidases that act on fatty acids or other substrates. The soluble class has a consensus motif consisting of carboxylates and histidines that coordinate an active site diiron cluster. The integral membrane class contains a different consensus motif composed of histidines. Biochemical and structural similarities between the integral membrane enzymes suggest that this class also uses a diiron cluster for catalysis. Soluble and membrane enzymes have been successfully re-engineered for substrate specificity and reaction outcome. It is anticipated that rational design of these enzymes will result in new and desired activities that may form the basis for improved oil crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂肪酸的去饱和和相关修饰1。
脂肪酸的去饱和首先涉及酶从酰基链上的亚甲基上去除一个氢,这是一个高耗能的步骤,需要活性氧中间体。已经确定了两种类型的去饱和酶,一种是可溶性的,另一种是膜结合的,它们具有不同的共识基元。对这些基序的数据库搜索显示,这些酶属于两个不同的多功能类,每一类都包括作用于脂肪酸或其他底物的去饱和酶、羟化酶和环氧化酶。可溶性类具有一致的基序,由羧酸盐和组氨酸组成,协调活性位点二铁簇。整体膜类包含不同的共识基序组成的组氨酸。整体膜酶之间的生化和结构相似性表明,这类酶也使用双铁簇进行催化。可溶性酶和膜酶已经成功地重新设计了底物特异性和反应结果。预计这些酶的合理设计将产生新的和理想的活性,这可能成为改良油料作物的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CIRCADIAN RHYTHMS IN PLANTS. MOLECULAR ENGINEERING OF C4 PHOTOSYNTHESIS. ISOPRENE EMISSION FROM PLANTS. CHLAMYDOMONAS AS A MODEL ORGANISM. THE PLASTID DIVISION MACHINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1