{"title":"Numerical Simulation of Infrared Heating and Ventilation before Stretch Blow Molding of PET Bottles","authors":"Thanh Tung Nguyen, Yun-Mei Luo, Luc Chevalier, Alain Baron, François Lesueur, Françoise Utheza","doi":"10.1007/s12289-023-01763-2","DOIUrl":null,"url":null,"abstract":"<div><p>The initial temperature of the preform has an important influence on the stretch and blowing step of the process to produce PET bottles. A complete 3D modelling of the heat part of the stretch blow molding machine including meshing is a long and complex task. Solving Navier Stokes equation coupled with the thermal problem takes more than one week using ANSYS/Fluent software. The numerical simulation of infrared (IR) heating taking into account the ventilation effect is very time-consuming. This work proposes a simplified approach to achieve quickly the numerical simulation in order to have an estimation of the temperature distribution in the preform. In this approach, the IR heating flux coming from IR lamps and the ventilation model are calculated in a semi analytical way and are applied as the boundary conditions of the simulation in COMSOL where only the preform is meshed. This approach is validated by comparing our numerical results with the experimental temperature distribution of PET preform.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01763-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The initial temperature of the preform has an important influence on the stretch and blowing step of the process to produce PET bottles. A complete 3D modelling of the heat part of the stretch blow molding machine including meshing is a long and complex task. Solving Navier Stokes equation coupled with the thermal problem takes more than one week using ANSYS/Fluent software. The numerical simulation of infrared (IR) heating taking into account the ventilation effect is very time-consuming. This work proposes a simplified approach to achieve quickly the numerical simulation in order to have an estimation of the temperature distribution in the preform. In this approach, the IR heating flux coming from IR lamps and the ventilation model are calculated in a semi analytical way and are applied as the boundary conditions of the simulation in COMSOL where only the preform is meshed. This approach is validated by comparing our numerical results with the experimental temperature distribution of PET preform.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.