Study on the Inhibitory Effect of Cystine, Cysteine, and Clutamate as Inhibitors on X100 Pipeline Steel in 1 M HCl

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Electrocatalysis Pub Date : 2023-06-02 DOI:10.1007/s12678-023-00830-1
Pandong Zhang, Liang He, Xiaolu Sun, Xinran Liu, Ping Li
{"title":"Study on the Inhibitory Effect of Cystine, Cysteine, and Clutamate as Inhibitors on X100 Pipeline Steel in 1 M HCl","authors":"Pandong Zhang,&nbsp;Liang He,&nbsp;Xiaolu Sun,&nbsp;Xinran Liu,&nbsp;Ping Li","doi":"10.1007/s12678-023-00830-1","DOIUrl":null,"url":null,"abstract":"<div><p>Metal corrosion can cause massive economic losses and many safety hazards; thus, metal corrosion inhibition has been a major research direction worldwide. Among the many methods to stop metal corrosion, the addition of corrosion inhibitors is a common method. The use of amino acids as metal corrosion inhibitors not only has the advantage of being economical and efficient but also meets the long-term concept of being environmentally friendly. In this study, the effect on the corrosion behavior of a mild steel (X100 pipeline steel) in 1 M HCl containing the same concentration of the amino groups of cystine (Cys-Cys), cysteine (Cys), and glutamate (Glu) was investigated via density functional theory (DFT) and various characterization methods. These methods include the weightlessness method, electrochemical tests, scanning electron microscopy (SEM), and the contact angle test. The results show that the inhibition efficiency increased with increasing inhibitor concentration; Cys-Cys showed the best inhibition and Glu showed the poorest inhibition for X100 pipeline steel at the same amino group concentration. Furthermore, the results obtained from various characterization methods were generally consistent.</p></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00830-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal corrosion can cause massive economic losses and many safety hazards; thus, metal corrosion inhibition has been a major research direction worldwide. Among the many methods to stop metal corrosion, the addition of corrosion inhibitors is a common method. The use of amino acids as metal corrosion inhibitors not only has the advantage of being economical and efficient but also meets the long-term concept of being environmentally friendly. In this study, the effect on the corrosion behavior of a mild steel (X100 pipeline steel) in 1 M HCl containing the same concentration of the amino groups of cystine (Cys-Cys), cysteine (Cys), and glutamate (Glu) was investigated via density functional theory (DFT) and various characterization methods. These methods include the weightlessness method, electrochemical tests, scanning electron microscopy (SEM), and the contact angle test. The results show that the inhibition efficiency increased with increasing inhibitor concentration; Cys-Cys showed the best inhibition and Glu showed the poorest inhibition for X100 pipeline steel at the same amino group concentration. Furthermore, the results obtained from various characterization methods were generally consistent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半胱氨酸、半胱氨酸和谷氨酸盐作为抑制剂对X100管线钢在1m盐酸中抑制作用的研究
金属腐蚀会造成巨大的经济损失和诸多安全隐患;因此,金属缓蚀已成为世界范围内的主要研究方向。在许多阻止金属腐蚀的方法中,添加缓蚀剂是一种常用的方法。使用氨基酸作为金属缓蚀剂不仅具有经济、高效的优点,而且符合环保的长期理念。本研究采用密度泛函理论(DFT)和各种表征方法,研究了含有相同浓度胱氨酸(Cys-Cys)、半胱氨酸(Cys)和谷氨酸(Glu)的1 M HCl对低碳钢(X100管线钢)腐蚀行为的影响。这些方法包括失重法、电化学测试、扫描电子显微镜(SEM)和接触角测试。结果表明:缓蚀剂浓度越大,缓蚀效果越好;在相同的氨基浓度下,Cys-Cys对X100管线钢的抑制效果最好,Glu的抑制效果最差。此外,各种表征方法得到的结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
期刊最新文献
Exfoliated 2-D Graphitic Carbon Nitride Nanosheets for Electrochemical Detection of the Antiviral Drug Valganciclovir Simultaneous Measurement of Uric Acid, Guanine, and Adenine Using AgNP@Mn-MOFs Composite-Based Electrochemical Sensor at Trace Level: Application to Blood, Urine, and DNA Sample Matrices Hofmann-Type Coordination Polymer-Derived Nickel Phosphide Nanoplates for Electrocatalytic Oxidation and Determination of Insulin In Situ Synthesized Gold-Conjugated Hemoglobin-Cu3 (PO4)2 Hybrid Nanopetals for Enhanced Electrochemical Detection of H2O2 A Theoretical Inquest of Atomically Injected Ni-Atom over Graphene and Analogous Substrates for Hydrogen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1