Microvascular transplantation after acute myocardial infarction.

Benjamin R Shepherd, James B Hoying, Stuart K Williams
{"title":"Microvascular transplantation after acute myocardial infarction.","authors":"Benjamin R Shepherd,&nbsp;James B Hoying,&nbsp;Stuart K Williams","doi":"10.1089/ten.2007.0025","DOIUrl":null,"url":null,"abstract":"<p><p>The primary objective of this study was to evaluate epicardial transplantation of an intact microvascular network for treatment of myocardial ischemia in a murine model of acute myocardial infarction. We describe transplantation of an intact microvascular network constructed from isolated microvascular segments stabilized in a 3-dimensional matrix to the epicardial surface after acute myocardial infarction. This microvascular graft was implanted as a patch on the epicardium of mice after left coronary artery ligation. After 14 and 28 days of implantation, left ventricular (LV) function was assessed and grafts evaluated via histology and cytochemistry. Inosculation of microvessels within the graft with host coronary microcirculation occurred as early as 7 days after initial tissue grafting. Morphologic evaluation of the grafts revealed arterioles, venules, capillaries, and erythrocytes within vascular lumina. Control grafts of collagen alone remained avascular. LV infarct size was smaller, and LV function improved in treated animals. Engraftment of whole microvascular units can be achieved to support cell-assisted vascular remodeling. Microvascular grafts may provide therapeutic benefit as a primary treatment or serve as a microvascular platform for cardiac repair and regeneration.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":" ","pages":"2871-9"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2007.0025","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2007.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

The primary objective of this study was to evaluate epicardial transplantation of an intact microvascular network for treatment of myocardial ischemia in a murine model of acute myocardial infarction. We describe transplantation of an intact microvascular network constructed from isolated microvascular segments stabilized in a 3-dimensional matrix to the epicardial surface after acute myocardial infarction. This microvascular graft was implanted as a patch on the epicardium of mice after left coronary artery ligation. After 14 and 28 days of implantation, left ventricular (LV) function was assessed and grafts evaluated via histology and cytochemistry. Inosculation of microvessels within the graft with host coronary microcirculation occurred as early as 7 days after initial tissue grafting. Morphologic evaluation of the grafts revealed arterioles, venules, capillaries, and erythrocytes within vascular lumina. Control grafts of collagen alone remained avascular. LV infarct size was smaller, and LV function improved in treated animals. Engraftment of whole microvascular units can be achieved to support cell-assisted vascular remodeling. Microvascular grafts may provide therapeutic benefit as a primary treatment or serve as a microvascular platform for cardiac repair and regeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性心肌梗死后微血管移植。
本研究的主要目的是评估完整微血管网络心外膜移植治疗急性心肌梗死小鼠模型心肌缺血的效果。我们描述了在急性心肌梗死后将一个完整的微血管网络移植到心外膜表面,该网络由分离的微血管段在三维基质中稳定构建而成。该微血管移植物作为贴片植入左冠状动脉结扎后的小鼠心外膜。植入14天和28天后,通过组织学和细胞化学方法评估左心室(LV)功能和移植物。移植体内微血管与宿主冠状动脉微循环的融合最早发生在初始组织移植后7天。形态学检查显示血管腔内有小动脉、小静脉、毛细血管和红细胞。对照移植的胶原蛋白单独保持无血管。左室梗死面积减小,左室功能改善。整个微血管单元的移植可以支持细胞辅助血管重构。微血管移植可以作为主要治疗手段或作为心脏修复和再生的微血管平台提供治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue engineering
Tissue engineering CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
自引率
0.00%
发文量
0
期刊最新文献
Cartilage reshaping via in vitro mechanical loading. ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics. Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. A novel time-varying poly lactic-co glycolic acid external sheath for vein grafts designed under physiological loading.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1