{"title":"Applications of MEMS technologies in tissue engineering.","authors":"Christopher M Puleo, Hsin-Chih Yeh, Tza-Huei Wang","doi":"10.1089/ten.2007.0214","DOIUrl":null,"url":null,"abstract":"<p><p>The success of therapeutic strategies within the fields of regenerative medicine, including tissue engineering, biomaterials engineering, and cell and tissue transplantation science, relies on researchers' understanding of the complex cellular microenvironments that occur within functional tissue. Microfabricated biomedical platforms provide tools for researchers to study cellular response to various stimuli with micro- and nanoscale spatial control. Initial studies utilizing relatively passive means of microenvironmental control have provided the fundamental knowledge required to begin to design microculture platforms that closely mimic these biological systems. In this review, we discuss second-generation cell and tissue culture platforms that utilize active components, borrowed from work in the development of microelectromechanical systems (MEMS). These microsystems offer the unprecedented opportunity to fabricate culture platforms designed to match tissue-specific growth parameters. In addition, the adoption of MEMS components opens up the door for future integration with the burgeoning field of microanalytical systems, providing analytical platforms that retain the sensitivity and resolution required within low-volume, microfluidic culture technologies.</p>","PeriodicalId":23102,"journal":{"name":"Tissue engineering","volume":" ","pages":"2839-54"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/ten.2007.0214","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/ten.2007.0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
The success of therapeutic strategies within the fields of regenerative medicine, including tissue engineering, biomaterials engineering, and cell and tissue transplantation science, relies on researchers' understanding of the complex cellular microenvironments that occur within functional tissue. Microfabricated biomedical platforms provide tools for researchers to study cellular response to various stimuli with micro- and nanoscale spatial control. Initial studies utilizing relatively passive means of microenvironmental control have provided the fundamental knowledge required to begin to design microculture platforms that closely mimic these biological systems. In this review, we discuss second-generation cell and tissue culture platforms that utilize active components, borrowed from work in the development of microelectromechanical systems (MEMS). These microsystems offer the unprecedented opportunity to fabricate culture platforms designed to match tissue-specific growth parameters. In addition, the adoption of MEMS components opens up the door for future integration with the burgeoning field of microanalytical systems, providing analytical platforms that retain the sensitivity and resolution required within low-volume, microfluidic culture technologies.