{"title":"Biological control of some wood-decay fungi with antagonistic fungi","authors":"Selim Hınçal, Mesut Yalçın","doi":"10.1007/s10532-023-10045-2","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most important biological factors that damage wood materials are wood-decay fungi (WDF). Chemical preservatives have traditionally been the most effective method for controlling WDF. However, due to environmental pressures, scientists are working on alternative protection methods. The aim of this study was to investigate the potential of some antagonistic fungi against wood-decay fungi as a biological control agent (BCA). For this purpose, the antagonistic effects of <i>Trichoderma harzianum, Trichoderma viride, Aspergillus niger</i>, and <i>Penicillium brevicompactum</i> fungi were investigated against the <i>Trametes versicolor, Trametes hirsuta, Stereum hirsutum, Coniophora puteana, Neolentinus lepideus</i>, and <i>Postia placenta</i> species of wood-decay Basidiomycetes fungi. In the study, firstly, inhibition rates were determined by comparing dual culture tests on agar medium, and then the performance of BCAs was compared by performing decay tests on wood blocks. As a result of the study, it was determined that the species belonging to the genus <i>Trichoderma</i> showed a very effective performance on WDF, increased the inhibition rate to 76–99%, and reduced the weight loss to 1.9–5.8%. Considering the inhibition rates, it was determined that the most effective rate of the BCAs was on <i>P. placenta</i> and the least on <i>S. hirsutum</i> species. According to the results obtained, it has been determined that some BCAs were very effective biological control agents of rot fungi on agar and wood blocks in vitro. However, in order to more clearly determine the effectiveness of BCAs in practice, this study, which was carried out in the laboratory environment, should be supported by tests performed in contact with the external field and soil.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"597 - 607"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10045-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most important biological factors that damage wood materials are wood-decay fungi (WDF). Chemical preservatives have traditionally been the most effective method for controlling WDF. However, due to environmental pressures, scientists are working on alternative protection methods. The aim of this study was to investigate the potential of some antagonistic fungi against wood-decay fungi as a biological control agent (BCA). For this purpose, the antagonistic effects of Trichoderma harzianum, Trichoderma viride, Aspergillus niger, and Penicillium brevicompactum fungi were investigated against the Trametes versicolor, Trametes hirsuta, Stereum hirsutum, Coniophora puteana, Neolentinus lepideus, and Postia placenta species of wood-decay Basidiomycetes fungi. In the study, firstly, inhibition rates were determined by comparing dual culture tests on agar medium, and then the performance of BCAs was compared by performing decay tests on wood blocks. As a result of the study, it was determined that the species belonging to the genus Trichoderma showed a very effective performance on WDF, increased the inhibition rate to 76–99%, and reduced the weight loss to 1.9–5.8%. Considering the inhibition rates, it was determined that the most effective rate of the BCAs was on P. placenta and the least on S. hirsutum species. According to the results obtained, it has been determined that some BCAs were very effective biological control agents of rot fungi on agar and wood blocks in vitro. However, in order to more clearly determine the effectiveness of BCAs in practice, this study, which was carried out in the laboratory environment, should be supported by tests performed in contact with the external field and soil.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.