{"title":"Biodegradation of di-2-ethylhexyl phthalate by Bacillus firmus MP04 strain: parametric optimization using full factorial design","authors":"Madhavi Rashmi, Tanuja Singh, Nitesh Singh Rajput, Shweta Kulshreshtha","doi":"10.1007/s10532-023-10043-4","DOIUrl":null,"url":null,"abstract":"<div><p>Di-2-ethylhexyl phthalate (DEHP) is used as a plasticizer in making plastics and released from landfills. This study attempted to degrade DEHP using microbial isolates. Isolates of <i>Bacillus</i> spp. were tested for their efficacy in degrading DEHP. Degradation was assessed using liquid chromatography-mass spectrometry (LC–MS). The most efficient DEHP degradation was achieved by <i>Bacillus firmus</i> MP04, which has been identified as <i>Bacillus firmus</i> MP04. This strain was found to use DEHP as the sole source of carbon without carbon source supplementation. Full factorial design was used to optimize the conditions for DEHP degradation which revealed the suitability of pH 7, 5% salt concentration, 20 to 37 °C temperature, and yeast extract as a nitrogen source. LC–MS elucidated the possible degradation mechanism via benzoic acid formation. However, prolonged incubation formed a typical compound denatonium benzoate due to reactions with other compounds. As maximum degradation was achieved in 4 days, prolonged incubation is not suggested. It can be concluded that new strain <i>Bacillus firmus</i> MP04 is the most efficient strain among all the tested strains for DEHP degradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"34 6","pages":"567 - 579"},"PeriodicalIF":3.1000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-023-10043-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10043-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Di-2-ethylhexyl phthalate (DEHP) is used as a plasticizer in making plastics and released from landfills. This study attempted to degrade DEHP using microbial isolates. Isolates of Bacillus spp. were tested for their efficacy in degrading DEHP. Degradation was assessed using liquid chromatography-mass spectrometry (LC–MS). The most efficient DEHP degradation was achieved by Bacillus firmus MP04, which has been identified as Bacillus firmus MP04. This strain was found to use DEHP as the sole source of carbon without carbon source supplementation. Full factorial design was used to optimize the conditions for DEHP degradation which revealed the suitability of pH 7, 5% salt concentration, 20 to 37 °C temperature, and yeast extract as a nitrogen source. LC–MS elucidated the possible degradation mechanism via benzoic acid formation. However, prolonged incubation formed a typical compound denatonium benzoate due to reactions with other compounds. As maximum degradation was achieved in 4 days, prolonged incubation is not suggested. It can be concluded that new strain Bacillus firmus MP04 is the most efficient strain among all the tested strains for DEHP degradation.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.