K. Vijayvargia, M. Dadfarnia, P. Sofronis, M. Kubota, A. Staykov, K. Wada, J. A. Pugh, T. J. Eason
{"title":"Three-dimensional constraint-based void-growth model for high temperature hydrogen attack","authors":"K. Vijayvargia, M. Dadfarnia, P. Sofronis, M. Kubota, A. Staykov, K. Wada, J. A. Pugh, T. J. Eason","doi":"10.1007/s10704-023-00739-2","DOIUrl":null,"url":null,"abstract":"<div><p>High temperature hydrogen attack (HTHA) is degradation of steels exposed to hydrogen gas at high temperatures and pressures. Hydrogen in steels reacts with carbon from carbides to produce methane gas bubbles typically on grain boundaries which grow and coalesce, leading to loss of strength and fracture toughness. Current design practice against HTHA is based on the Nelson curves which define the conditions for safe operation in a temperature/hydrogen-partial-pressure diagram. Nelson curves are phenomenological in nature and do not account for the underlying failure mechanism(s), material microstructure, carbide stability, and applied stresses. In light of experimental evidence of predominant cavitation ahead of cracks reported by Martin et al. (Acta Mater 140:300–304, 2017), it is expected that void growth is accelerated by the triaxial stresses associated with microstructural flaws. To this end, we propose a three-dimensional, axisymmetric, constraint-based void-growth model extending the “one-dimensional” model of Dadfarnia et al. (Int J Fract 219:1–17, 2019). The present model is shown to yield satisfactory agreement with the available experimental data from hydrogen attack of 2¼Cr–1Mo steel at temperatures ranging from 500 to 600 °C. In addition, the model is used to construct Nelson type curves in the temperature/hydrogen-partial-pressure diagram. These curves represent failure times for given applied stresses and triaxiality. The proposed methodology can be viewed as providing a step toward improving the current design practice against HTHA while maintaining the simplicity of the original Nelson curve approach.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"243 2","pages":"203 - 228"},"PeriodicalIF":2.2000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-023-00739-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00739-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature hydrogen attack (HTHA) is degradation of steels exposed to hydrogen gas at high temperatures and pressures. Hydrogen in steels reacts with carbon from carbides to produce methane gas bubbles typically on grain boundaries which grow and coalesce, leading to loss of strength and fracture toughness. Current design practice against HTHA is based on the Nelson curves which define the conditions for safe operation in a temperature/hydrogen-partial-pressure diagram. Nelson curves are phenomenological in nature and do not account for the underlying failure mechanism(s), material microstructure, carbide stability, and applied stresses. In light of experimental evidence of predominant cavitation ahead of cracks reported by Martin et al. (Acta Mater 140:300–304, 2017), it is expected that void growth is accelerated by the triaxial stresses associated with microstructural flaws. To this end, we propose a three-dimensional, axisymmetric, constraint-based void-growth model extending the “one-dimensional” model of Dadfarnia et al. (Int J Fract 219:1–17, 2019). The present model is shown to yield satisfactory agreement with the available experimental data from hydrogen attack of 2¼Cr–1Mo steel at temperatures ranging from 500 to 600 °C. In addition, the model is used to construct Nelson type curves in the temperature/hydrogen-partial-pressure diagram. These curves represent failure times for given applied stresses and triaxiality. The proposed methodology can be viewed as providing a step toward improving the current design practice against HTHA while maintaining the simplicity of the original Nelson curve approach.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.