Mengfan Luo, Qiaoyue Yuan, Mingzhen Liu, Xingye Song, Yingjie Xu, Tao Zhang, Xiaoqun Zeng, Zhen Wu, Daodong Pan and Yuxing Guo
{"title":"Astaxanthin nanoparticles ameliorate dextran sulfate sodium-induced colitis by alleviating oxidative stress, regulating intestinal flora, and protecting the intestinal barrier†","authors":"Mengfan Luo, Qiaoyue Yuan, Mingzhen Liu, Xingye Song, Yingjie Xu, Tao Zhang, Xiaoqun Zeng, Zhen Wu, Daodong Pan and Yuxing Guo","doi":"10.1039/D3FO03331G","DOIUrl":null,"url":null,"abstract":"<p >This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM–GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. <em>In vivo</em> studies demonstrated that MFGM–GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM–GA-astaxanthin on oxidative stress. Moreover, MFGM–GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including <em>Lactobacillus</em>, <em>Bacteroides</em>, <em>Ruminococcus</em>, and <em>Shigella</em>. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 21","pages":" 9567-9579"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fo/d3fo03331g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop a novel astaxanthin nanoparticle using gum arabic (GA) and whey protein powder enriched with milk fat globule membranes (MFGM-WPI) as carriers and to investigate its effect and alleviation mechanism on colitis in mice. We demonstrated that MFGM–GA-astaxanthin could improve the bioaccessibility of astaxanthin and cope with oxidative stress more effectively in a Caco-2 cell model. In vivo studies demonstrated that MFGM–GA-astaxanthin alleviated colitis symptoms and repaired intestinal barrier function by increasing the expression of mucin 2, occludin, and zonula occludens-1. This was attributed to the alleviating effect of MFGM–GA-astaxanthin on oxidative stress. Moreover, MFGM–GA-astaxanthin restored the abnormalities of flora caused by dextran sulfate sodium, including Lactobacillus, Bacteroides, Ruminococcus, and Shigella. This study provides a basis for the therapeutic effect of astaxanthin nanoparticles on colon diseases.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.