A comparison of the methods for detecting dyadic patterns in the actor-partner interdependence model.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2024-08-01 Epub Date: 2023-09-29 DOI:10.3758/s13428-023-02233-y
Junyeong Yang, Jiwon Kim, Minjung Kim
{"title":"A comparison of the methods for detecting dyadic patterns in the actor-partner interdependence model.","authors":"Junyeong Yang, Jiwon Kim, Minjung Kim","doi":"10.3758/s13428-023-02233-y","DOIUrl":null,"url":null,"abstract":"<p><p>In the actor-partner interdependence model (APIM), various dyadic patterns between an actor and partner can be examined. One widely used approach is the parameter k method, which tests whether the ratio of the partner effect to the actor effect (p/a) is significantly different from pattern values such as -1 (contrast), 0 (actor-only or partner-only), and 1 (couple). Although using a phantom variable was a useful method for estimating the k ratio, it is no longer necessary due to the availability of statistical packages that allow for a direct estimation of the k ratio without the inclusion of the phantom variable. Moreover, it is possible to examine the patterns by testing new variables defined in different forms from the k or using the χ<sup>2</sup> difference test. To date, no previous studies have evaluated and compared the various approaches for detecting the dyadic patterns in APIM. This study aims to assess and compare the performance of four different methods for detecting dyadic patterns: (1) phantom variable approach, (2) direct estimation of the parameter k, (3) new-variable approach, and (4) χ<sup>2</sup> difference test. The first two methods frequently included multiple pattern values in there confidence interval. Furthermore, the phantom variable approach was prone to convergence issues. The other two alternatives performed better in detecting the dyadic patterns without convergence problems. Given the findings of the study, we suggest a novel procedure for examining dyadic patterns in APIM.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"4946-4957"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02233-y","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the actor-partner interdependence model (APIM), various dyadic patterns between an actor and partner can be examined. One widely used approach is the parameter k method, which tests whether the ratio of the partner effect to the actor effect (p/a) is significantly different from pattern values such as -1 (contrast), 0 (actor-only or partner-only), and 1 (couple). Although using a phantom variable was a useful method for estimating the k ratio, it is no longer necessary due to the availability of statistical packages that allow for a direct estimation of the k ratio without the inclusion of the phantom variable. Moreover, it is possible to examine the patterns by testing new variables defined in different forms from the k or using the χ2 difference test. To date, no previous studies have evaluated and compared the various approaches for detecting the dyadic patterns in APIM. This study aims to assess and compare the performance of four different methods for detecting dyadic patterns: (1) phantom variable approach, (2) direct estimation of the parameter k, (3) new-variable approach, and (4) χ2 difference test. The first two methods frequently included multiple pattern values in there confidence interval. Furthermore, the phantom variable approach was prone to convergence issues. The other two alternatives performed better in detecting the dyadic patterns without convergence problems. Given the findings of the study, we suggest a novel procedure for examining dyadic patterns in APIM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在行动者-伙伴相互依存模型中检测二元模式的方法的比较。
在行动者-伙伴相互依存模型(APIM)中,可以检查行动者和伙伴之间的各种二元模式。一种广泛使用的方法是参数k方法,该方法测试伴侣效应与参与者效应的比率(p/a)是否与模式值显著不同,如-1(对比度)、0(仅参与者或仅伴侣)和1(情侣)。尽管使用幻影变量是估计k比率的一种有用方法,但由于统计包的可用性,在不包括幻影变量的情况下,可以直接估计k比率,因此不再需要使用幻影变量。此外,可以通过测试由k定义的不同形式的新变量或使用χ2差异检验来检验模式。到目前为止,没有先前的研究评估和比较检测APIM中二元模式的各种方法。本研究旨在评估和比较四种不同方法检测二元模式的性能:(1)体模变量法,(2)参数k的直接估计,(3)新变量法和(4)χ2差异检验。前两种方法经常在置信区间中包含多个模式值。此外,幻影变量法容易出现收敛问题。另外两种方案在检测二元模式方面表现更好,没有收敛问题。鉴于这项研究的结果,我们提出了一种新的方法来检查APIM中的二元模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Dissecting the components of error in analogue report tasks. A template and tutorial for preregistering studies using passive smartphone measures. Scoring story recall for individual differences research: Central details, peripheral details, and automated scoring. A tutorial: Analyzing eye and head movements in virtual reality. Behavioral science labs: How to solve the multi-user problem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1