{"title":"Assessment of 13 essential and toxic trace elements in tumor and peritumoral brain tissues from human glioblastoma","authors":"Hao-Long Zeng, Binmei Jia, Qing Yang, Fengbo Zeng, Huijun Li, Chao-Xi Li, Liming Cheng","doi":"10.1007/s00775-023-02021-1","DOIUrl":null,"url":null,"abstract":"<div><p>Trace elements within the brain are important for proper neurological function, but their imbalance has been rarely investigated in glioblastoma. This study enrolled a total of 14 patients with glioblastoma, and the tumor and peritumoral brain tissues were collected while undergoing surgery. The concentrations of Mg, Ca, Cr, Mn, Fe, Co, Cu, Zn, Se, As, Cd, Tl and Pb were determined using a well-evaluated ICP-MS method. The Cu- and Cd-binding proteomes were further analyzed using the anatomic transcriptional atlas from Ivy GAP. Histological evaluation was based on rubeanic acid staining and immunohistochemistry, respectively. The 13 trace element concentrations were obtained, and the highest were Ca, Mn, Fe, Zn and Cu, ranging from a few to dozens of ug/g. Correlation analysis suggested the existence of two intra-correlated clusters: essential metals (Cu–Ca–Zn–Mg) and heavy metals (Pb–As–Cd–Tl–Co–Cr–Mn). Compared to the tumor samples, significantly higher levels of Cu and Cd were observed in the peritumoral region. Further analysis of the Cu- and Cd-binding proteins from the anatomic view suggested that DBH and NOS1 were obviously increased in the leading edge than the central tumor region. Consistent with the above findings, histological evaluation of Cu and DBH further confirmed more copper and DBH expressions in the peritumoral area compared to the tumor core. Trace elements differ in tumor and peritumoral brain zone in glioblastoma, which may associate with tumor angiogenesis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"28 8","pages":"699 - 709"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s00775-023-02021-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trace elements within the brain are important for proper neurological function, but their imbalance has been rarely investigated in glioblastoma. This study enrolled a total of 14 patients with glioblastoma, and the tumor and peritumoral brain tissues were collected while undergoing surgery. The concentrations of Mg, Ca, Cr, Mn, Fe, Co, Cu, Zn, Se, As, Cd, Tl and Pb were determined using a well-evaluated ICP-MS method. The Cu- and Cd-binding proteomes were further analyzed using the anatomic transcriptional atlas from Ivy GAP. Histological evaluation was based on rubeanic acid staining and immunohistochemistry, respectively. The 13 trace element concentrations were obtained, and the highest were Ca, Mn, Fe, Zn and Cu, ranging from a few to dozens of ug/g. Correlation analysis suggested the existence of two intra-correlated clusters: essential metals (Cu–Ca–Zn–Mg) and heavy metals (Pb–As–Cd–Tl–Co–Cr–Mn). Compared to the tumor samples, significantly higher levels of Cu and Cd were observed in the peritumoral region. Further analysis of the Cu- and Cd-binding proteins from the anatomic view suggested that DBH and NOS1 were obviously increased in the leading edge than the central tumor region. Consistent with the above findings, histological evaluation of Cu and DBH further confirmed more copper and DBH expressions in the peritumoral area compared to the tumor core. Trace elements differ in tumor and peritumoral brain zone in glioblastoma, which may associate with tumor angiogenesis.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.