Spatial heterogeneity and scenario simulation of carbon budget on provincial scale in China

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Carbon Balance and Management Pub Date : 2023-09-20 DOI:10.1186/s13021-023-00237-x
Zhenyue Liu, Jinbing Zhang, Pengyan Zhang, Ling Jiang, Dan Yang, Tianqi Rong
{"title":"Spatial heterogeneity and scenario simulation of carbon budget on provincial scale in China","authors":"Zhenyue Liu,&nbsp;Jinbing Zhang,&nbsp;Pengyan Zhang,&nbsp;Ling Jiang,&nbsp;Dan Yang,&nbsp;Tianqi Rong","doi":"10.1186/s13021-023-00237-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Conducting an extensive study on the spatial heterogeneity of the overall carbon budget and its influencing factors and the decoupling status of carbon emissions from economic development, by undertaking simulation projections under different carbon emission scenarios is crucial for China to achieve its targets to peak carbon emissions by 2030 and to achieve carbon neutrality by 2060. There are large disparities in carbon emissions from energy consumption, the extent of land used for carbon absorption, and the status of decoupling of emissions from economic development, among various regions of China.</p><h3>Results</h3><p>Based on night light data and land use data, we investigated carbon budget through model estimation, decoupling analysis, and scenario simulation. The results show that the carbon deficit had a continuous upward trend from 2000 to 2018, and there was a significant positive spatial correlation. The overall status of decoupling first improved and then deteriorated. Altogether, energy consumption intensity, population density of built-up land, and built-up land area influenced the decoupling of carbon emissions from economic development. There are significant scenarios of carbon emissions from energy consumption for the study area during the forecast period, only in the low-carbon scenario will the study area reach the expected carbon emissions peak ahead of schedule in 2027; the peak carbon emissions will be 6479.27 million tons.</p><h3>Conclusions</h3><p>China’s provincial-scale carbon emissions show a positive correlation with economic development within the study period. It is necessary to optimize the economic structure, transforming the economic development mode, and formulating policies to control the expansion of built-up land. Efforts must be made to improve technology and promote industrial restructuring, to effectively reduce energy consumption intensity.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510156/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-023-00237-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Background

Conducting an extensive study on the spatial heterogeneity of the overall carbon budget and its influencing factors and the decoupling status of carbon emissions from economic development, by undertaking simulation projections under different carbon emission scenarios is crucial for China to achieve its targets to peak carbon emissions by 2030 and to achieve carbon neutrality by 2060. There are large disparities in carbon emissions from energy consumption, the extent of land used for carbon absorption, and the status of decoupling of emissions from economic development, among various regions of China.

Results

Based on night light data and land use data, we investigated carbon budget through model estimation, decoupling analysis, and scenario simulation. The results show that the carbon deficit had a continuous upward trend from 2000 to 2018, and there was a significant positive spatial correlation. The overall status of decoupling first improved and then deteriorated. Altogether, energy consumption intensity, population density of built-up land, and built-up land area influenced the decoupling of carbon emissions from economic development. There are significant scenarios of carbon emissions from energy consumption for the study area during the forecast period, only in the low-carbon scenario will the study area reach the expected carbon emissions peak ahead of schedule in 2027; the peak carbon emissions will be 6479.27 million tons.

Conclusions

China’s provincial-scale carbon emissions show a positive correlation with economic development within the study period. It is necessary to optimize the economic structure, transforming the economic development mode, and formulating policies to control the expansion of built-up land. Efforts must be made to improve technology and promote industrial restructuring, to effectively reduce energy consumption intensity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国省级碳预算的空间异质性和情景模拟。
背景:对总体碳预算的空间异质性及其影响因素以及碳排放与经济发展的脱钩状况进行了广泛的研究,通过在不同碳排放情景下进行模拟预测,对于中国实现到2030年碳排放峰值和到2060年实现碳中和的目标至关重要。结果:基于夜光数据和土地利用数据,通过模型估计、脱钩分析和情景模拟,对我国各地区能源消费碳排放、碳吸收土地利用程度以及排放与经济发展脱钩状况进行了调查。结果表明,2000-2008年,碳赤字呈持续上升趋势,且存在显著的正空间相关性。脱钩的总体状况先是改善后恶化。综合来看,能源消耗强度、建成区人口密度和建成区面积影响了碳排放与经济发展的脱钩。预测期内,研究区域能源消耗产生的碳排放存在显著情景,只有在低碳情景下,研究区域才会在2027年提前达到预期的碳排放峰值;碳排放峰值为647927万吨。结论:在研究期内,中国省级碳排放量与经济发展呈正相关。要优化经济结构,转变经济发展方式,制定控制建设用地扩张的政策。要着力提高技术水平,推动产业结构调整,切实降低能源消耗强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Balance and Management
Carbon Balance and Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
7.60
自引率
0.00%
发文量
17
审稿时长
14 weeks
期刊介绍: Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle. The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community. This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system. Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.
期刊最新文献
Methane cycling in temperate forests Stand structure and Brazilian pine as key determinants of carbon stock in a subtropical Atlantic forest Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future Accounting for carbon emissions in social water cycle system in nine provinces along the yellow river and analysis of influencing factors Quantification of biomass availability for wood harvesting and storage in the continental United States with a carbon cycle model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1