Oxidative Stress, Transfer RNA Metabolism, and Protein Synthesis.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-04-01 Epub Date: 2023-11-16 DOI:10.1089/ars.2022.0206
Yasutoshi Akiyama, Pavel Ivanov
{"title":"Oxidative Stress, Transfer RNA Metabolism, and Protein Synthesis.","authors":"Yasutoshi Akiyama, Pavel Ivanov","doi":"10.1089/ars.2022.0206","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. <b><i>Recent Advances:</i></b> Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. <b><i>Critical Issues:</i></b> Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. <b><i>Future Directions:</i></b> In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. <i>Antioxid. Redox Signal</i>. 40, 715-735.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"715-735"},"PeriodicalIF":5.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001508/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2022.0206","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化应激、tRNA代谢和蛋白质合成。
意义:氧化应激是指由于活性氧产生和抗氧化防御系统之间的不平衡而导致细胞内活性氧(ROS)水平过高。在氧化应激条件下,细胞触发各种应激反应途径来保护自己,其中信使RNA(mRNA)翻译的抑制是促进细胞存活的关键标志之一。这种调节过程最大限度地减少了细胞能量消耗,使细胞能够在不利条件下生存,并促进从应激诱导的损伤中恢复。最新进展:最近的研究表明,转移RNA(tRNA)在调节翻译方面发挥着重要作用,是不利条件下应激反应的一部分。特别是,依赖于高通量技术(如下一代测序和质谱方法)的研究为我们提供了有关机制的详细信息,如单个tRNA动力学和转录后修饰之间的串扰。关键问题:氧化应激导致tRNA的动态变化,包括其定位、切割以及表达谱和修饰模式的改变。越来越多的证据表明,这些变化不仅受到应激反应机制的严格调节,而且可以直接微调翻译效率,这有助于细胞或组织对氧化应激的特异性反应。未来方向:在这篇综述中,我们描述了在理解氧化应激引起的tRNA动态变化方面的最新进展。我们还强调了在这种情况下tRNA在翻译监管中的新兴作用。此外,我们还讨论了这一研究领域的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1