Meta-generalized gradient approximation time-dependent density functional theory study of electron trapping in Hf- and Zr-doped lutetium oxide: influencing the oxygen vacancy.

IF 1.3 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta crystallographica Section B, Structural science, crystal engineering and materials Pub Date : 2023-12-01 Epub Date: 2023-10-06 DOI:10.1107/S2052520623007709
Andrii Shyichuk
{"title":"Meta-generalized gradient approximation time-dependent density functional theory study of electron trapping in Hf- and Zr-doped lutetium oxide: influencing the oxygen vacancy.","authors":"Andrii Shyichuk","doi":"10.1107/S2052520623007709","DOIUrl":null,"url":null,"abstract":"<p><p>This work analyzes the effects of a nearby Hf or Zr dopant on the electron density trapped at an oxygen vacancy site. The two metals are among the dopants used to achieve thermoluminescence and energy storage in phosphors based on cubic lutetium oxide (c-Lu<sub>2</sub>O<sub>3</sub>). The presence of oxygen vacancies is anticipated in those phosphors. If the dopant is located outside the immediate surroundings of the vacancy site, the resulting optical trap depth is similar to that of the isolated oxygen vacancies (1.6-1.7 eV versus 1.7 eV). If the dopant is one of the four metal cations surrounding the vacancy site, the corresponding trap depth is 2.0-2.1 eV. Using time-dependent density-functional theory calculations, it was found that the excitation of the vacancy-trapped electrons can take two forms: a local excited state at the vacancy site can be formed, or an electron transfer to Hf might occur. With charge compensation in mind, several structures with three defects were analyzed: the dopant cation, the vacancy and an interstitial oxygen (Hf/Zr plus a Frenkel pair). These last two systems with the dopant in a +4 oxidation state and a single electron trapped at the vacancy site correspond to zero total charge, while another electron can be trapped. The vacancy site is expected to trap the electron, not the dopant. The composite defects of the dopant and Frenkel pair are thus considered the most likely electron traps in cubic Lu<sub>2</sub>O<sub>3</sub>:Hf and cubic Lu<sub>2</sub>O<sub>3</sub>:Zr.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520623007709","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work analyzes the effects of a nearby Hf or Zr dopant on the electron density trapped at an oxygen vacancy site. The two metals are among the dopants used to achieve thermoluminescence and energy storage in phosphors based on cubic lutetium oxide (c-Lu2O3). The presence of oxygen vacancies is anticipated in those phosphors. If the dopant is located outside the immediate surroundings of the vacancy site, the resulting optical trap depth is similar to that of the isolated oxygen vacancies (1.6-1.7 eV versus 1.7 eV). If the dopant is one of the four metal cations surrounding the vacancy site, the corresponding trap depth is 2.0-2.1 eV. Using time-dependent density-functional theory calculations, it was found that the excitation of the vacancy-trapped electrons can take two forms: a local excited state at the vacancy site can be formed, or an electron transfer to Hf might occur. With charge compensation in mind, several structures with three defects were analyzed: the dopant cation, the vacancy and an interstitial oxygen (Hf/Zr plus a Frenkel pair). These last two systems with the dopant in a +4 oxidation state and a single electron trapped at the vacancy site correspond to zero total charge, while another electron can be trapped. The vacancy site is expected to trap the electron, not the dopant. The composite defects of the dopant and Frenkel pair are thus considered the most likely electron traps in cubic Lu2O3:Hf and cubic Lu2O3:Zr.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hf和Zr掺杂氧化镥中电子俘获的元广义梯度近似时间依赖密度泛函理论研究:影响氧空位。
这项工作分析了附近的Hf或Zr掺杂剂对氧空位处捕获的电子密度的影响。这两种金属是用于在基于立方氧化镥(c-Lu2O3)的磷光体中实现热释光和能量存储的掺杂剂之一。预期在这些磷光体中存在氧空位。如果掺杂剂位于空位的直接周围之外,则产生的光学陷阱深度与分离的氧空位的光学陷阱厚度相似(1.6-1.7 eV与1.7 eV)。如果掺杂剂是围绕空位的四种金属阳离子之一,则相应的陷阱深度为2.0-2.1 使用含时密度泛函理论计算,发现空位捕获电子的激发可以采取两种形式:在空位位置形成局部激发态,或者电子转移到Hf。考虑到电荷补偿,分析了几种具有三个缺陷的结构:掺杂阳离子、空位和间隙氧(Hf/Zr加上Frenkel对)。掺杂剂处于+4氧化态的最后两个系统和在空位捕获的单个电子对应于零总电荷,而另一个电子可以被捕获。预计空位将捕获电子,而不是掺杂剂。掺杂剂和Frenkel对的复合缺陷因此被认为是立方Lu2O3:Hf和立方Lu2O3:Zr中最可能的电子陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta crystallographica Section B, Structural science, crystal engineering and materials
Acta crystallographica Section B, Structural science, crystal engineering and materials CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
3.60
自引率
5.30%
发文量
0
期刊介绍: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.
期刊最新文献
Assessment of the exchange-hole dipole moment dispersion correction for the energy ranking stage of the seventh crystal structure prediction blind test. Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction. Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate. From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®). Polymorph sampling with coupling to extended variables: enhanced sampling of polymorph energy landscapes and free energy perturbation of polymorph ensembles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1