Influence of transcutaneous electrical nerve stimulation on the distance walked by older adults during the 6-min test of walking endurance

IF 2 4区 医学 Q3 NEUROSCIENCES Journal of Electromyography and Kinesiology Pub Date : 2023-09-21 DOI:10.1016/j.jelekin.2023.102827
Mohammed S. Alenazy, Rehab Al-Jaafari, Sajjad Daneshgar, Anneli Folkesson-Dey, Roger M. Enoka
{"title":"Influence of transcutaneous electrical nerve stimulation on the distance walked by older adults during the 6-min test of walking endurance","authors":"Mohammed S. Alenazy,&nbsp;Rehab Al-Jaafari,&nbsp;Sajjad Daneshgar,&nbsp;Anneli Folkesson-Dey,&nbsp;Roger M. Enoka","doi":"10.1016/j.jelekin.2023.102827","DOIUrl":null,"url":null,"abstract":"<div><p><span>The purpose of our study was to compare the influence of two types of transcutaneous electrical nerve stimulation<span> (TENS) on the performance of older adults on the 6-min test of walking endurance and on the ability to maintain balance during upright standing. Twenty-six healthy older adults (72 ± 5.4 yrs) performed tests of motor function while TENS was applied to the tibialis anterior and rectus femoris muscles of each leg. Linear mixed models were used to compare the influence of TENS on walking distance in a 6-min test of walking endurance and on sway-area rate in tests of standing balance. There was a significant decrease in the distances walked in each minute of the 6-min walk test for both the Continuous and Burst TENS modes compared with Baseline (p </span></span><em>&lt;</em> 0.01 and p <em>&lt;</em> 0.001, respectively). The influence of TENS on walking distance was associated with several significant effects on the mean and coefficient of variation for stride length and stride frequency between the first and last minute of the test and between the two TENS modes and the Baseline values. In contrast, there was no significant effect of TENS on sway-area rate in any balance test, which indicates that the supplementary sensory feedback compromised walking performance of older adults but not the ability to maintain balance during upright standing.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"73 ","pages":"Article 102827"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105064112300086X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of our study was to compare the influence of two types of transcutaneous electrical nerve stimulation (TENS) on the performance of older adults on the 6-min test of walking endurance and on the ability to maintain balance during upright standing. Twenty-six healthy older adults (72 ± 5.4 yrs) performed tests of motor function while TENS was applied to the tibialis anterior and rectus femoris muscles of each leg. Linear mixed models were used to compare the influence of TENS on walking distance in a 6-min test of walking endurance and on sway-area rate in tests of standing balance. There was a significant decrease in the distances walked in each minute of the 6-min walk test for both the Continuous and Burst TENS modes compared with Baseline (p < 0.01 and p < 0.001, respectively). The influence of TENS on walking distance was associated with several significant effects on the mean and coefficient of variation for stride length and stride frequency between the first and last minute of the test and between the two TENS modes and the Baseline values. In contrast, there was no significant effect of TENS on sway-area rate in any balance test, which indicates that the supplementary sensory feedback compromised walking performance of older adults but not the ability to maintain balance during upright standing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在6分钟步行耐力测试中,经皮神经电刺激对老年人步行距离的影响。
我们研究的目的是比较两种类型的经皮神经电刺激(TENS)对老年人6分钟步行耐力测试和直立时保持平衡能力的影响。26名健康老年人(72±5.4岁)进行了运动功能测试,同时对每条腿的胫骨前肌和股直肌应用TENS。线性混合模型用于比较TENS在6分钟步行耐力测试中对步行距离的影响和在站立平衡测试中对摇摆面积率的影响。与基线相比,连续和突发TENS模式下6分钟步行测试的每分钟步行距离均显著减少(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
70
审稿时长
74 days
期刊介绍: Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.
期刊最新文献
Inter-session Reliability of Magnetic Nerve Stimulation and Within-Session comparison to Electrical Nerve Stimulation in Evaluating Neuromuscular Function of Knee Extensor Muscles. Effect of tasks on intramuscular regional differences in rectus femoris elasticity during isometric contraction: An ultrasound shear wave elastography study. Flexor hallucis longus and tibialis anterior: A synergistic relationship. The unprecedented progresses in neuromechanics over the past 50 years - In celebration of the 50th anniversary of the international society of biomechanics. Wavelet-based time-frequency intermuscular beta-band coherence decreases with age but increases after mental fatigue in ankle muscles during gait independent of age.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1