{"title":"Recent Advances in Organic Sensors for the Detection of Ag<sup>+</sup> Ions: A Comprehensive Review (2019-2023).","authors":"Mubark Alshareef","doi":"10.1080/10408347.2023.2263877","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, organic sensors for the detection of Ag<sup>+</sup> and other metal ions have experienced significant advancements. This is because there is a growing demand for reliable and sensitive tools to monitor various environmental pollutants. Organic sensors have O-, S-, and N-donor atoms, which can act as a ligand and coordinate with different metal ions, hence stabilizing them in a variety of oxidation states. This interaction gives colorimetric and fluorescence changes, which are used to monitor Ag<sup>+</sup> and other metal ions. This comprehensive review highlights the latest developments in organic sensors for the recognition of Ag<sup>+</sup>. We present an in-depth analysis of the underlying principles and mechanisms governing Ag<sup>+</sup> ion recognition. Various organic sensing platforms, such as fluorescent and colorimetric sensors, are discussed, shedding light on their unique advantages and limitations. Special attention is given to the diverse range of organic ligands, receptors, and functional materials used to achieve high sensitivity, selectivity, and quantification accuracy. Additionally, we delve into real-world applications of organic sensors for Ag<sup>+</sup> ion detection, examining their performance in complex matrices such as biological, environmental, industrial and agricultural matrices.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"83-98"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2023.2263877","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, organic sensors for the detection of Ag+ and other metal ions have experienced significant advancements. This is because there is a growing demand for reliable and sensitive tools to monitor various environmental pollutants. Organic sensors have O-, S-, and N-donor atoms, which can act as a ligand and coordinate with different metal ions, hence stabilizing them in a variety of oxidation states. This interaction gives colorimetric and fluorescence changes, which are used to monitor Ag+ and other metal ions. This comprehensive review highlights the latest developments in organic sensors for the recognition of Ag+. We present an in-depth analysis of the underlying principles and mechanisms governing Ag+ ion recognition. Various organic sensing platforms, such as fluorescent and colorimetric sensors, are discussed, shedding light on their unique advantages and limitations. Special attention is given to the diverse range of organic ligands, receptors, and functional materials used to achieve high sensitivity, selectivity, and quantification accuracy. Additionally, we delve into real-world applications of organic sensors for Ag+ ion detection, examining their performance in complex matrices such as biological, environmental, industrial and agricultural matrices.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.