Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate

IF 28.1 1区 生物学 Q1 CELL BIOLOGY Cell Research Pub Date : 2023-09-19 DOI:10.1038/s41422-023-00874-4
Yu-Qing Wu, Chen-Song Zhang, Jinye Xiong, Dong-Qi Cai, Chen-Zhe Wang, Yu Wang, Yan-Hui Liu, Yu Wang, Yiming Li, Jian Wu, Jianfeng Wu, Bin Lan, Xuefeng Wang, Siwei Chen, Xianglei Cao, Xiaoyan Wei, Hui-Hui Hu, Huiling Guo, Yaxin Yu, Abdul Ghafoor, Changchuan Xie, Yaying Wu, Zheni Xu, Cixiong Zhang, Mingxia Zhu, Xi Huang, Xiufeng Sun, Shu-Yong Lin, Hai-Long Piao, Jianyin Zhou, Sheng-Cai Lin
{"title":"Low glucose metabolite 3-phosphoglycerate switches PHGDH from serine synthesis to p53 activation to control cell fate","authors":"Yu-Qing Wu, Chen-Song Zhang, Jinye Xiong, Dong-Qi Cai, Chen-Zhe Wang, Yu Wang, Yan-Hui Liu, Yu Wang, Yiming Li, Jian Wu, Jianfeng Wu, Bin Lan, Xuefeng Wang, Siwei Chen, Xianglei Cao, Xiaoyan Wei, Hui-Hui Hu, Huiling Guo, Yaxin Yu, Abdul Ghafoor, Changchuan Xie, Yaying Wu, Zheni Xu, Cixiong Zhang, Mingxia Zhu, Xi Huang, Xiufeng Sun, Shu-Yong Lin, Hai-Long Piao, Jianyin Zhou, Sheng-Cai Lin","doi":"10.1038/s41422-023-00874-4","DOIUrl":null,"url":null,"abstract":"Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":"33 11","pages":"835-850"},"PeriodicalIF":28.1000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41422-023-00874-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低血糖代谢产物3-磷酸甘油酸将PHGDH从丝氨酸合成转换为p53激活以控制细胞命运。
糖酵解中间代谢产物,如1,6-二磷酸果糖,可以作为信号,控制能量代谢之外的代谢状态。然而,糖酵解代谢产物是否也在控制细胞命运中发挥作用仍有待探索。在这里,我们发现低水平的糖酵解代谢产物3-磷酸甘油酸(3-PGA)可以将磷酸甘油酸脱氢酶(PHGDH)从无修复丝氨酸合成转变为促凋亡的p53激活。PHGDH是一种p53结合蛋白,当3-PGA未被占据时,它与支架蛋白AXIN以与激酶HIPK2复合的形式相互作用,这两种蛋白也是p53结合蛋白。这导致多价p53结合复合物的形成,该复合物允许HIPK2特异性磷酸化p53-Ser46,从而促进细胞凋亡。此外,我们发现与3-PGA组成性结合的PHGDH突变体(R135W和V261M)即使在低葡萄糖条件下也会消除p53的激活,而不能结合3-PGA的突变体(T57A和T78A)即使在高糖存在下也会在肝细胞癌(HCC)细胞中引起组成性p53激活和凋亡。在体内,PHGDH-T57A诱导细胞凋亡并抑制二乙基亚硝胺诱导的小鼠HCC的生长,而PHGDH-R135W防止细胞凋亡并促进HCC生长,并且敲除Trp53消除了上述作用。重要的是,降低全身葡萄糖水平的热量限制可以阻碍依赖PHGDH的HCC生长。总之,这些结果揭示了葡萄糖可利用性自主控制p53活性的机制,为代谢底物可利用性控制细胞命运提供了一种新的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Research
Cell Research 生物-细胞生物学
CiteScore
53.90
自引率
0.70%
发文量
2420
审稿时长
2.3 months
期刊介绍: Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.
期刊最新文献
A GSDMD agonist boosts specific antitumor immunity Structure and genome editing activity of the novel CRISPR-Cas12o1 effector. Structural insight into GPR55 ligand recognition and G-protein coupling Structure basis of ligand recognition and activation of GPR55 A cross-species foundation model for single cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1