Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2023-10-01 Epub Date: 2023-09-20 DOI:10.1089/cmb.2022.0237
Hongliang Zou, Wanting Yu
{"title":"Integrating Low-Order and High-Order Correlation Information for Identifying Phage Virion Proteins.","authors":"Hongliang Zou,&nbsp;Wanting Yu","doi":"10.1089/cmb.2022.0237","DOIUrl":null,"url":null,"abstract":"<p><p>Phage virion proteins (PVPs) play an important role in the host cell. Fast and accurate identification of PVPs is beneficial for the discovery and development of related drugs. Although wet experimental approaches are the first choice to identify PVPs, they are costly and time-consuming. Thus, researchers have turned their attention to computational models, which can speed up related studies. Therefore, we proposed a novel machine-learning model to identify PVPs in the current study. First, 50 different types of physicochemical properties were used to denote protein sequences. Next, two different approaches, including Pearson's correlation coefficient (PCC) and maximal information coefficient (MIC), were employed to extract discriminative information. Further, to capture the high-order correlation information, we used PCC and MIC once again. After that, we adopted the least absolute shrinkage and selection operator algorithm to select the optimal feature subset. Finally, these chosen features were fed into a support vector machine to discriminate PVPs from phage non-virion proteins. We performed experiments on two different datasets to validate the effectiveness of our proposed method. Experimental results showed a significant improvement in performance compared with state-of-the-art approaches. It indicates that the proposed computational model may become a powerful predictor in identifying PVPs.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2022.0237","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Phage virion proteins (PVPs) play an important role in the host cell. Fast and accurate identification of PVPs is beneficial for the discovery and development of related drugs. Although wet experimental approaches are the first choice to identify PVPs, they are costly and time-consuming. Thus, researchers have turned their attention to computational models, which can speed up related studies. Therefore, we proposed a novel machine-learning model to identify PVPs in the current study. First, 50 different types of physicochemical properties were used to denote protein sequences. Next, two different approaches, including Pearson's correlation coefficient (PCC) and maximal information coefficient (MIC), were employed to extract discriminative information. Further, to capture the high-order correlation information, we used PCC and MIC once again. After that, we adopted the least absolute shrinkage and selection operator algorithm to select the optimal feature subset. Finally, these chosen features were fed into a support vector machine to discriminate PVPs from phage non-virion proteins. We performed experiments on two different datasets to validate the effectiveness of our proposed method. Experimental results showed a significant improvement in performance compared with state-of-the-art approaches. It indicates that the proposed computational model may become a powerful predictor in identifying PVPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合低阶和高阶相关信息用于鉴定噬菌体病毒蛋白。
噬菌体病毒粒子蛋白(PVPs)在宿主细胞中起着重要作用。PVP的快速准确鉴定有利于相关药物的发现和开发。尽管湿法实验方法是鉴定PVP的首选方法,但它们成本高昂且耗时。因此,研究人员将注意力转向了计算模型,这可以加快相关研究的速度。因此,我们在当前的研究中提出了一种新的机器学习模型来识别PVP。首先,使用50种不同类型的物理化学性质来表示蛋白质序列。其次,采用皮尔逊相关系数(PCC)和最大信息系数(MIC)两种不同的方法提取判别信息。此外,为了捕获高阶相关信息,我们再次使用PCC和MIC。之后,我们采用最小绝对收缩和选择算子算法来选择最优特征子集。最后,将这些选择的特征输入到支持载体机器中,以区分PVP和噬菌体非病毒粒子蛋白。我们在两个不同的数据集上进行了实验,以验证我们提出的方法的有效性。实验结果表明,与最先进的方法相比,性能显著提高。这表明所提出的计算模型可能成为识别PVP的强大预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
A Hybrid GNN Approach for Improved Molecular Property Prediction. Protein-Protein Interaction Prediction Model Based on ProtBert-BiGRU-Attention. BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation. SuperTAD-Fast: Accelerating Topologically Associating Domains Detection Through Discretization. CFINet: Cross-Modality MRI Feature Interaction Network for Pseudoprogression Prediction of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1