Feasibility and workflow analysis of IV-DSA-based augmented reality-guided brain arteriovenous malformation resection in a hybrid operating room: i-Flow tailored method.
{"title":"Feasibility and workflow analysis of IV-DSA-based augmented reality-guided brain arteriovenous malformation resection in a hybrid operating room: i-Flow tailored method.","authors":"Chih-Wei Huang, Chung-Hsin Lee, Kai-Chen Chung, Yuang-Seng Tsuei","doi":"10.1136/jnis-2023-020797","DOIUrl":null,"url":null,"abstract":"<p><p>Augmented reality (AR) has emerged as a promising technology in various medical fields.1 2 In the context of brain arteriovenous malformation (bAVM) surgery, AR offers the potential to enhance surgical visualization and improve procedural accuracy.3 4 5 6 This report aims to explore the application of digital subtraction angiography (DSA) from an IV contrast injection (IV-DSA) in AR-guided resection of bAVMs in a neurosurgical hybrid operating room.The workflow of IV-DSA-based AR-guided surgery for the resection of bAVMs consists of four main components: (1) acquiring source images through i-Flow tailored or multiphase scans (Siemens, Germany); (2) labelling targets in the workstation using Smartbrush software (Brainlab, Westchester, Illinois, USA); (3) using the Brainlab Curve navigation system; and (4) merging microscopic AR fusion using Zeiss Kinevo (AG, Germany). In video 1 we show the entire workflow and introduce i-Flow tailored IV-DSA data acquisition in the hybrid operating room. In summary, IV-DSA-based augmented reality is an innovative technique for bAVM surgery. neurintsurg;17/3/332/V1F1V1Video 1-i-flow tailored iv-DSA.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":"332"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2023-020797","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Augmented reality (AR) has emerged as a promising technology in various medical fields.1 2 In the context of brain arteriovenous malformation (bAVM) surgery, AR offers the potential to enhance surgical visualization and improve procedural accuracy.3 4 5 6 This report aims to explore the application of digital subtraction angiography (DSA) from an IV contrast injection (IV-DSA) in AR-guided resection of bAVMs in a neurosurgical hybrid operating room.The workflow of IV-DSA-based AR-guided surgery for the resection of bAVMs consists of four main components: (1) acquiring source images through i-Flow tailored or multiphase scans (Siemens, Germany); (2) labelling targets in the workstation using Smartbrush software (Brainlab, Westchester, Illinois, USA); (3) using the Brainlab Curve navigation system; and (4) merging microscopic AR fusion using Zeiss Kinevo (AG, Germany). In video 1 we show the entire workflow and introduce i-Flow tailored IV-DSA data acquisition in the hybrid operating room. In summary, IV-DSA-based augmented reality is an innovative technique for bAVM surgery. neurintsurg;17/3/332/V1F1V1Video 1-i-flow tailored iv-DSA.
期刊介绍:
The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.