{"title":"Identification of a Novel Variant of <i>PDGFC</i> Associated with Nonsyndromic Cleft Lip and Palate in a Chinese Family.","authors":"Xin Yu, Simin Yang, Wenqian Xia, Xiaorong Zhou, Meiqin Gao, Hui Shi, Yan Zhou","doi":"10.1155/2023/8814046","DOIUrl":null,"url":null,"abstract":"<p><p>Nonsyndromic cleft lip with or without cleft palate (NSCL/P) accounts for 70% of the total number of patients with cleft lip with or without cleft palate (CL/P) and is the most common type of congenital deformity of the craniomaxillofacial region. In this study, whole exome sequencing (WES) and Sanger sequencing were performed on affected members of a Han Chinese family, and a missense variant in the platelet-derived growth factor C (<i>PDGFC</i>) gene (NM_016205: c.G93T: p.Q31H) was identified to be associated with NSCL/P. Bioinformatic studies demonstrated that the amino acid corresponding to this variation is highly conserved in many mammals and leads to a glutamine-to-histidine substitution in an evolutionarily conserved DNA-binding domain. It was found that the expression of <i>PDGFC</i> was significantly decreased in the dental pulp stem cells (DPSCs) of NSCL/P cases, compared to the controls, and that the variant (NM_016205: c.G93T) reduced the expression of <i>PDGFC</i>. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that <i>Pdgfc</i> deficiency disrupted NSCL/P-related signaling pathways such as the MAPK signaling pathway and cell adhesion molecules. In conclusion, our study identified a missense variant (NM_016205: c.G93T) in exon 1 of <i>PDGFC</i> potentially associated with susceptibility to NSCL/P.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":"2023 ","pages":"8814046"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/8814046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCL/P) accounts for 70% of the total number of patients with cleft lip with or without cleft palate (CL/P) and is the most common type of congenital deformity of the craniomaxillofacial region. In this study, whole exome sequencing (WES) and Sanger sequencing were performed on affected members of a Han Chinese family, and a missense variant in the platelet-derived growth factor C (PDGFC) gene (NM_016205: c.G93T: p.Q31H) was identified to be associated with NSCL/P. Bioinformatic studies demonstrated that the amino acid corresponding to this variation is highly conserved in many mammals and leads to a glutamine-to-histidine substitution in an evolutionarily conserved DNA-binding domain. It was found that the expression of PDGFC was significantly decreased in the dental pulp stem cells (DPSCs) of NSCL/P cases, compared to the controls, and that the variant (NM_016205: c.G93T) reduced the expression of PDGFC. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that Pdgfc deficiency disrupted NSCL/P-related signaling pathways such as the MAPK signaling pathway and cell adhesion molecules. In conclusion, our study identified a missense variant (NM_016205: c.G93T) in exon 1 of PDGFC potentially associated with susceptibility to NSCL/P.
期刊介绍:
International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.