{"title":"Targeted memory reactivation during slow-wave sleep vs. sleep stage N2: no significant differences in a vocabulary task.","authors":"Anna Wick, Björn Rasch","doi":"10.1101/lm.053683.122","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep supports memory consolidation, and slow-wave sleep (SWS) in particular is assumed to benefit the consolidation of verbal learning material. Re-exposure to previously learned words during SWS with a technique known as targeted memory reactivation (TMR) consistently benefits memory. However, TMR has also been successfully applied during sleep stage N2, though a direct comparison between words selectively reactivated during SWS versus N2 is still missing. Here, we directly compared the effects of N2 TMR and SWS TMR on memory performance in a vocabulary learning task in a within-subject design. Thirty-four healthy young participants (21 in the main sample and 13 in an additional sample) learned 120 Dutch-German word pairs before sleep. Participants in the main sample slept for ∼8 h during the night, while participants in the additional sample slept ∼3 h. We reactivated the Dutch words selectively during N2 and SWS in one single night. Forty words were not cued. Participants in the main sample recalled the German translations of the Dutch words after sleep in the morning, while those in the additional sample did so at 2:00 a.m. As expected, we observed no differences in recall performance between words reactivated during N2 and SWS. However, we failed to find an overall memory benefit of reactivated over nonreactivated words. Detailed time-frequency analyses showed that words played during N2 elicited stronger characteristic oscillatory responses in several frequency bands, including spindle and theta frequencies, compared with SWS. These oscillatory responses did not vary with the memory strengths of individual words. Our results question the robustness and replicability of the TMR benefit on memory using our Dutch vocabulary learning task. We discuss potential boundary conditions for vocabulary reactivation paradigms and, most importantly, see the need for further replication studies, ideally including multiple laboratories and larger sample sizes.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"30 9","pages":"192-200"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053683.122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep supports memory consolidation, and slow-wave sleep (SWS) in particular is assumed to benefit the consolidation of verbal learning material. Re-exposure to previously learned words during SWS with a technique known as targeted memory reactivation (TMR) consistently benefits memory. However, TMR has also been successfully applied during sleep stage N2, though a direct comparison between words selectively reactivated during SWS versus N2 is still missing. Here, we directly compared the effects of N2 TMR and SWS TMR on memory performance in a vocabulary learning task in a within-subject design. Thirty-four healthy young participants (21 in the main sample and 13 in an additional sample) learned 120 Dutch-German word pairs before sleep. Participants in the main sample slept for ∼8 h during the night, while participants in the additional sample slept ∼3 h. We reactivated the Dutch words selectively during N2 and SWS in one single night. Forty words were not cued. Participants in the main sample recalled the German translations of the Dutch words after sleep in the morning, while those in the additional sample did so at 2:00 a.m. As expected, we observed no differences in recall performance between words reactivated during N2 and SWS. However, we failed to find an overall memory benefit of reactivated over nonreactivated words. Detailed time-frequency analyses showed that words played during N2 elicited stronger characteristic oscillatory responses in several frequency bands, including spindle and theta frequencies, compared with SWS. These oscillatory responses did not vary with the memory strengths of individual words. Our results question the robustness and replicability of the TMR benefit on memory using our Dutch vocabulary learning task. We discuss potential boundary conditions for vocabulary reactivation paradigms and, most importantly, see the need for further replication studies, ideally including multiple laboratories and larger sample sizes.
期刊介绍:
The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.