HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2024-01-01 Epub Date: 2023-12-19 DOI:10.1002/minf.202300207
Konstantin I Popov, James Wellnitz, Travis Maxfield, Alexander Tropsha
{"title":"HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.","authors":"Konstantin I Popov, James Wellnitz, Travis Maxfield, Alexander Tropsha","doi":"10.1002/minf.202300207","DOIUrl":null,"url":null,"abstract":"<p><p>Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202300207","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用扩展生成建模(HIDDEN-GEM)丰富的对接发现命中率:一种用于加速超大型化学库虚拟筛选的新计算工作流。
最近,由数十亿甚至数万亿分子组成的按需、可购买的化学文库的快速扩张,对依赖分子对接的传统基于结构的虚拟筛选方法的有效应用提出了挑战。我们提出了一种新的计算方法,称为HIDDEN GEM(HIt Discovery using Docking ENriched by GEnerative Modeling),它大大加速了虚拟筛选。该工作流程独特地集成了机器学习、生成化学、大规模化学相似性搜索以及在工作流程的开始和结束时对选定的小型库进行分子对接。对于每个目标,HIDDEN GEM从超大型化学库中提名少量得分最高的虚拟点击。我们通过使用包含370亿个分子的Enamine REAL Space文库对16个不同的蛋白质靶标进行虚拟筛选,以HIDDEN GEM为基准。我们表明,与现有技术的加速虚拟筛选方法相比,HIDDEN GEM产生了最高的富集因子,同时需要最少的计算资源。HIDDEN GEM可以用任何对接软件执行,并由计算资源有限的用户使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Cover Picture: (Mol. Inf. 9/2024) The freedom space - a new set of commercially available molecules for hit discovery. Cover Picture: (Mol. Inf. 8/2024) Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst. Sulfotransferase-mediated phase II drug metabolism prediction of substrates and sites using accessibility and reactivity-based algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1