Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2023-09-25 DOI:10.1007/s12200-023-00078-z
Cheng Wang, Yaoguang Rong, Ti Wang
{"title":"Inorganic A-site cations improve the performance of band-edge carriers in lead halide perovskites.","authors":"Cheng Wang, Yaoguang Rong, Ti Wang","doi":"10.1007/s12200-023-00078-z","DOIUrl":null,"url":null,"abstract":"<p><p>In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr<sub>3</sub> and CsPbBr<sub>3</sub> single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr<sub>3</sub> increases almost 8 times compared to that in MAPbBr<sub>3</sub>. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"25"},"PeriodicalIF":4.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00078-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In lead halide perovskites, organic A-site cations are generally introduced to fine-tune the properties. One of the questions under debate is whether organic A-site cations are essential for high-performance solar cells. In this study, we compare the band edge carrier dynamics and diffusion process in MAPbBr3 and CsPbBr3 single-crystal microplates. By transient absorption microscopy, the band-edge carrier diffusion constants are unraveled. With the replacement of inorganic A-site cations, the diffusion constant in CsPbBr3 increases almost 8 times compared to that in MAPbBr3. This work reveals that introducing inorganic A-site cations can lead to a much larger diffusion length and improve the performance of band-edge carriers.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无机A位阳离子改善了卤化铅钙钛矿中带边载流子的性能。
在卤化铅钙钛矿中,通常引入有机A位阳离子来微调其性质。争论中的一个问题是有机A位阳离子是否对高性能太阳能电池至关重要。在本研究中,我们比较了MAPbBr3和CsPbBr3单晶微孔板中的带边载流子动力学和扩散过程。通过瞬态吸收显微镜,揭示了带边载流子的扩散常数。随着无机A位阳离子的取代,CsPbBr3中的扩散常数比MAPbBr3增加了近8倍。这项工作表明,引入无机A位阳离子可以导致更大的扩散长度,并提高带边载流子的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment. Optical logic array: a photonic solution towards universal computing. Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery. Influence of the homotopy stability perturbation on physical variations of non-local opto-electronic semiconductor materials. Correction: White light emission in 0D halide perovskite [(CH3)3S]2SnCl6·H2O crystals through variation of doping ns2 ions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1