Purpose: To predict the corresponding age of myelin maturation from brain MRI scans in infants and young children by using a deep learning algorithm and to build upon previously published models.
Materials and methods: Brain MRI scans acquired between January 1, 2011, and March 17, 2021, in our institution in patients aged 0-3 years were retrospectively retrieved from the archive. An ensemble of two-dimensional (2D) and three-dimensional (3D) convolutional neural network models was trained and internally validated in 710 patients to predict myelin maturation age on the basis of radiologist-generated labels. The model ensemble was tested on an internal dataset of 123 patients and two external datasets of 226 (0-25 months of age) and 383 (0-2 months of age) healthy children and infants, respectively. Mean absolute error (MAE) and Pearson correlation coefficients were used to assess model performance.
Results: The 2D, 3D, and 2D-plus-3D ensemble models showed MAE values of 1.43, 2.55, and 1.77 months, respectively, on the internal test set, values of 2.26, 2.27, and 1.22 months on the first external test set, and values of 0.44, 0.27, and 0.31 months on the second external test set. The ensemble model outperformed the previous state-of-the-art model on the same external test set (MAE = 1.22 vs 2.09 months).
期刊介绍:
Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.