Resequencing and genome-wide association studies of autotetraploid potato.

IF 10.6 Q1 HORTICULTURE Molecular Horticulture Pub Date : 2022-02-10 DOI:10.1186/s43897-022-00027-y
Feng Zhang, Li Qu, Yincong Gu, Zhi-Hong Xu, Hong-Wei Xue
{"title":"Resequencing and genome-wide association studies of autotetraploid potato.","authors":"Feng Zhang,&nbsp;Li Qu,&nbsp;Yincong Gu,&nbsp;Zhi-Hong Xu,&nbsp;Hong-Wei Xue","doi":"10.1186/s43897-022-00027-y","DOIUrl":null,"url":null,"abstract":"<p><p>Potato is the fourth most important food crop in the world. Although with a long history for breeding approaches, genomic information and association between genes and agronomic traits remain largely unknown particularly in autotetraploid potato cultivars, which limit the molecular breeding progression. By resequencing the genome of 108 main cultivar potato accessions with rich genetic diversity and population structure from International Potato Center, with approximate 20-fold coverage, we revealed more than 27 million Single Nucleotide Polymorphisms and ~ 3 million Insertion and Deletions with high quality and accuracy. Domestication analysis and genome-wide association studies (GWAS) identified candidate loci related to photoperiodic flowering time and temperature sensitivity as well as disease resistance, providing informative insights into the selection and domestication of cultivar potato. In addition, GWAS with GWASploy for 25 agronomic traits identified candidate loci by association signals, especially those related to tuber size, small-sized tuber weight and tuber thickness that was also validated by transcriptome analysis. Our study provides a valuable resource that facilitates the elucidation of domestication process as well as the genetic studies and agronomic improvement of autotetraploid potato.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"6"},"PeriodicalIF":10.6000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515019/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-022-00027-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 5

Abstract

Potato is the fourth most important food crop in the world. Although with a long history for breeding approaches, genomic information and association between genes and agronomic traits remain largely unknown particularly in autotetraploid potato cultivars, which limit the molecular breeding progression. By resequencing the genome of 108 main cultivar potato accessions with rich genetic diversity and population structure from International Potato Center, with approximate 20-fold coverage, we revealed more than 27 million Single Nucleotide Polymorphisms and ~ 3 million Insertion and Deletions with high quality and accuracy. Domestication analysis and genome-wide association studies (GWAS) identified candidate loci related to photoperiodic flowering time and temperature sensitivity as well as disease resistance, providing informative insights into the selection and domestication of cultivar potato. In addition, GWAS with GWASploy for 25 agronomic traits identified candidate loci by association signals, especially those related to tuber size, small-sized tuber weight and tuber thickness that was also validated by transcriptome analysis. Our study provides a valuable resource that facilitates the elucidation of domestication process as well as the genetic studies and agronomic improvement of autotetraploid potato.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同源四倍体马铃薯的再测序和全基因组关联研究。
马铃薯是世界上第四重要的粮食作物。尽管育种方法有着悠久的历史,但基因组信息以及基因与农艺性状之间的关联在很大程度上仍然未知,尤其是在同源四倍体马铃薯品种中,这限制了分子育种的进展。通过对来自国际马铃薯中心的108份具有丰富遗传多样性和群体结构的主要品种马铃薯材料(覆盖率约为20倍)的基因组进行重新测序,我们发现了2700多万个单核苷酸多态性和 ~ 300万次高质量、高精度的插入和删除。驯化分析和全基因组关联研究(GWAS)确定了与光周期开花时间、温度敏感性以及抗病性相关的候选基因座,为品种马铃薯的选择和驯化提供了信息。此外,GWAS和GWASploy对25个农艺性状通过关联信号确定了候选基因座,特别是与块茎大小、小块茎重量和块茎厚度相关的基因座,也通过转录组分析进行了验证。我们的研究为同源四倍体马铃薯的驯化过程、遗传研究和农艺改良提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
期刊最新文献
Horizontal transfer of plasmid-like extrachromosomal circular DNAs across graft junctions in Solanaceae. Transcription factor PbrERF114 is involved in the regulation of ethylene synthesis during pear fruit ripening. Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. Ovule initiation in crops characterized by multi-ovulate ovaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1