首页 > 最新文献

Molecular Horticulture最新文献

英文 中文
Climate change affects the suitability of Chinese cherry (Prunus pseudocerasus Lindl.) in China.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-06 DOI: 10.1186/s43897-024-00136-w
Zhengxin Lv, Songtao Jiu, Li Wang, Yan Xu, Jiyuan Wang, Xunju Liu, Jieming Xu, Yuxuan Wang, Muhammad Salman Haider, Ruie Liu, Caixi Zhang

The rapid development of Prunus pseudocerasus related industry has increasingly contributed to rural vitalization in China. This study employed a biomod2 ensemble model, utilizing environmental and species occurrence data from 151 P. pseudocerasus germplasm wild/local samples, to predict potential geographical distribution, suitability changes, climate dependence, and ecological niche dynamics. The optimized maximum entropy (MaxEnt) model yielded the most accurate predictions. The climate variables with the greatest impact on suitability were precipitation of warmest quarter and mean diurnal temperature range. The total potential suitable area for P. pseudocerasus was approximately 2.78 × 106 km2, increasing with CO2 concentration. The highly suitable area was primarily concentrated in basin terrains, plateaus, and plains of Sichuan Province. The current centroid in Lichuan exhibited gradual latitudinal and longitudinal movement. The predicted (2090s) ecological niche trends of P. pseudocerasus varied under different pathways and periods, with higher CO2 concentration associated with lower niche overlap. The CO2 emission concentration in the SSP246 scenario emerged as the most suitable climate model. Climate change is driving both the expansion of geographical distribution and the contraction of overlapping geographical distribution areas of P. pseudocerasus. These findings provide a theoretical basis for wild resource conservation, site selection for production, and introduction of allopatry for P. pseudocerasus.

{"title":"Climate change affects the suitability of Chinese cherry (Prunus pseudocerasus Lindl.) in China.","authors":"Zhengxin Lv, Songtao Jiu, Li Wang, Yan Xu, Jiyuan Wang, Xunju Liu, Jieming Xu, Yuxuan Wang, Muhammad Salman Haider, Ruie Liu, Caixi Zhang","doi":"10.1186/s43897-024-00136-w","DOIUrl":"https://doi.org/10.1186/s43897-024-00136-w","url":null,"abstract":"<p><p>The rapid development of Prunus pseudocerasus related industry has increasingly contributed to rural vitalization in China. This study employed a biomod2 ensemble model, utilizing environmental and species occurrence data from 151 P. pseudocerasus germplasm wild/local samples, to predict potential geographical distribution, suitability changes, climate dependence, and ecological niche dynamics. The optimized maximum entropy (MaxEnt) model yielded the most accurate predictions. The climate variables with the greatest impact on suitability were precipitation of warmest quarter and mean diurnal temperature range. The total potential suitable area for P. pseudocerasus was approximately 2.78 × 10<sup>6</sup> km<sup>2</sup>, increasing with CO<sub>2</sub> concentration. The highly suitable area was primarily concentrated in basin terrains, plateaus, and plains of Sichuan Province. The current centroid in Lichuan exhibited gradual latitudinal and longitudinal movement. The predicted (2090s) ecological niche trends of P. pseudocerasus varied under different pathways and periods, with higher CO<sub>2</sub> concentration associated with lower niche overlap. The CO<sub>2</sub> emission concentration in the SSP246 scenario emerged as the most suitable climate model. Climate change is driving both the expansion of geographical distribution and the contraction of overlapping geographical distribution areas of P. pseudocerasus. These findings provide a theoretical basis for wild resource conservation, site selection for production, and introduction of allopatry for P. pseudocerasus.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"26"},"PeriodicalIF":10.6,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel mode of WRKY1 regulating PR1-mediated immune balance to defend against powdery mildew in apple.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-05 DOI: 10.1186/s43897-024-00141-z
Liming Lan, Lifang Cao, Lulu Zhang, Weihong Fu, Changguo Luo, Chao Wu, Xianqi Zeng, Shenchun Qu, Xinyi Yu, Wenyi Deng, Xu Xu, Binhua Cai, Sanhong Wang

Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, poses a significant threat to apple production. Salicylic acid (SA) signaling plays a crucial role in enhancing resistance to biotrophic pathogens. While PR1, a defense protein induced by SA, is essential for plant immunity, its excessive accumulation can be detrimental. However, the mechanism of PR1-mediated immune balance remains unclear. This study identified a key transcription factor, WRKY1, which enhances the SA accumulation by modulating the SA biosynthesis gene EPS1, while simultaneously regulating the WRKY40-NPR3g module to prevent sustained PR1 expression caused by continuous SA accumulation. Specifically, the transcription factor WRKY40 upregulates NPR3g expression, and NPR3g interacts with NPR1 in an SA-dependent manner. Then, two TGA2c variants that interact with NPR1 to activate PR1 expression were identified: canonical TGA2c-1 and alternative splicing of TGA2c-2 with an exon deletion. SA does not influence the NPR1-TGA2c-1 interaction but is essential for the NPR1-TGA2c-2 interaction. Notably, NPR3g reduces PR1 levels by selectively disrupting the NPR1-TGA2c-2 complex through competition for the BTB-POZ domain of NPR1. In conclusion, this study identifies a novel mechanism by which WRKY1 modulates PR1-mediated immune balance to defend against PM.

{"title":"A novel mode of WRKY1 regulating PR1-mediated immune balance to defend against powdery mildew in apple.","authors":"Liming Lan, Lifang Cao, Lulu Zhang, Weihong Fu, Changguo Luo, Chao Wu, Xianqi Zeng, Shenchun Qu, Xinyi Yu, Wenyi Deng, Xu Xu, Binhua Cai, Sanhong Wang","doi":"10.1186/s43897-024-00141-z","DOIUrl":"10.1186/s43897-024-00141-z","url":null,"abstract":"<p><p>Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, poses a significant threat to apple production. Salicylic acid (SA) signaling plays a crucial role in enhancing resistance to biotrophic pathogens. While PR1, a defense protein induced by SA, is essential for plant immunity, its excessive accumulation can be detrimental. However, the mechanism of PR1-mediated immune balance remains unclear. This study identified a key transcription factor, WRKY1, which enhances the SA accumulation by modulating the SA biosynthesis gene EPS1, while simultaneously regulating the WRKY40-NPR3g module to prevent sustained PR1 expression caused by continuous SA accumulation. Specifically, the transcription factor WRKY40 upregulates NPR3g expression, and NPR3g interacts with NPR1 in an SA-dependent manner. Then, two TGA2c variants that interact with NPR1 to activate PR1 expression were identified: canonical TGA2c-1 and alternative splicing of TGA2c-2 with an exon deletion. SA does not influence the NPR1-TGA2c-1 interaction but is essential for the NPR1-TGA2c-2 interaction. Notably, NPR3g reduces PR1 levels by selectively disrupting the NPR1-TGA2c-2 complex through competition for the BTB-POZ domain of NPR1. In conclusion, this study identifies a novel mechanism by which WRKY1 modulates PR1-mediated immune balance to defend against PM.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"17"},"PeriodicalIF":10.6,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation dynamics in male germline development in Brassica Rapa.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-04 DOI: 10.1186/s43897-024-00137-9
Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao

Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.

动态 DNA 甲基化可抑制转座元件(TE)并调节基因活性,在植物发育过程中发挥着关键作用。虽然在了解拟南芥种系发育过程中的 DNA 甲基化重编程方面取得了重大进展,但其他双子叶植物是否存在类似的机制仍不清楚。在这里,我们利用全基因组亚硫酸氢盐测序(WGBS)分析了甘蓝型油菜的减数分裂细胞、小孢子和花粉中的 DNA 甲基化水平。与拟南芥相比,全局DNA甲基化分析显示了相似的CHH甲基化重编程,而在芸苔属植物中观察到了全局CG和CHG甲基化动态的不同模式。差异甲基化区域(DMR)分析确定了拉帕雄性细胞中的特异甲基化位点,这些位点更倾向于靶基因,这与拟南芥中的观察结果类似。此外,我们发现小 RNA 引导的 DNA 甲基化(RdDM)的活性和基因组靶向偏好在 B. Rapa 雄性生殖细胞发育过程中发生了改变。一个长末端重复(LTR)TEs子集被激活,这可能是由于B. Rapa雄性性发育过程中DNA甲基化的动态调控。这些发现为植物表观遗传重编程机制的进化提供了新的见解。
{"title":"DNA methylation dynamics in male germline development in Brassica Rapa.","authors":"Jun Zhang, Di Wu, Yating Zhang, Xiaoqi Feng, Hongbo Gao","doi":"10.1186/s43897-024-00137-9","DOIUrl":"10.1186/s43897-024-00137-9","url":null,"abstract":"<p><p>Dynamic DNA methylation represses transposable elements (TEs) and regulates gene activity, playing a pivotal role in plant development. Although substantial progress has been made in understanding DNA methylation reprogramming during germline development in Arabidopsis thaliana, whether similar mechanisms exist in other dicot plants remains unclear. Here, we analyzed DNA methylation levels in meiocytes, microspores, and pollens of Brassica Rapa using whole-genome bisulfite sequencing (WGBS). Global DNA methylation analysis revealed similar CHH methylation reprogramming compared to Arabidopsis, while distinct patterns were observed in the dynamics of global CG and CHG methylation in B. rapa. Differentially methylated region (DMR) analysis identified specifically methylated loci in the male sex cells of B. Rapa with a stronger tendency to target genes, similar to observations in Arabidopsis. Additionally, we found that the activity and genomic targeting preference of the small RNA-directed DNA methylation (RdDM) were altered during B. Rapa male germline development. A subset of long terminal repeat (LTR) TEs were activated, possibly due to the dynamic regulation of DNA methylation during male sexual development in B. Rapa. These findings provided new insights into the evolution of epigenetic reprogramming mechanisms in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"16"},"PeriodicalIF":10.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-03 DOI: 10.1186/s43897-024-00138-8
Yajun Yan, Wanwan Zhang, You Wang, Yue Wang, Chuanwei Li, Nan Zhao, Lijie Zhou, Jiangshuo Su, Likai Wang, Jiafu Jiang, Sumei Chen, Fadi Chen

The role of ethylene as an initial signaling molecule in waterlogging stress is well-established. However, the complex molecular mechanisms underlying ethylene biosynthesis and its functional significance in chrysanthemums under waterlogging conditions have remained unclear. In this study, we observed an increase in the expression of 1-aminocyclopropane-1-carboxylate synthase 6 (CmACS6), which encodes a key enzyme responsible for ethylene biosynthesis, in response to waterlogging. This elevation increases ethylene production, induces leaf chlorosis, and enhances the chrysanthemum's sensitivity to waterlogging stress. Moreover, our analysis of upstream regulators revealed that the expression of CmACS6, in response to waterlogging, is directly upregulated by CmHRE2-like (Hypoxia Responsive ERF-like, CmHRE2L), an ethylene response factor. Notably, CmHRE2-L binds directly to the GCC-like motif in the promoter region of CmACS6. Genetic validation assays demonstrated that CmHRE2L was induced by waterlogging and contributed to ethylene production, consequently reducing waterlogging tolerance in a partially CmACS6-dependent manner. This study identified the regulatory module involving CmHRE2L and CmACS6, which governs ethylene biosynthesis in response to waterlogging stress.

{"title":"CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum.","authors":"Yajun Yan, Wanwan Zhang, You Wang, Yue Wang, Chuanwei Li, Nan Zhao, Lijie Zhou, Jiangshuo Su, Likai Wang, Jiafu Jiang, Sumei Chen, Fadi Chen","doi":"10.1186/s43897-024-00138-8","DOIUrl":"10.1186/s43897-024-00138-8","url":null,"abstract":"<p><p>The role of ethylene as an initial signaling molecule in waterlogging stress is well-established. However, the complex molecular mechanisms underlying ethylene biosynthesis and its functional significance in chrysanthemums under waterlogging conditions have remained unclear. In this study, we observed an increase in the expression of 1-aminocyclopropane-1-carboxylate synthase 6 (CmACS6), which encodes a key enzyme responsible for ethylene biosynthesis, in response to waterlogging. This elevation increases ethylene production, induces leaf chlorosis, and enhances the chrysanthemum's sensitivity to waterlogging stress. Moreover, our analysis of upstream regulators revealed that the expression of CmACS6, in response to waterlogging, is directly upregulated by CmHRE2-like (Hypoxia Responsive ERF-like, CmHRE2L), an ethylene response factor. Notably, CmHRE2-L binds directly to the GCC-like motif in the promoter region of CmACS6. Genetic validation assays demonstrated that CmHRE2L was induced by waterlogging and contributed to ethylene production, consequently reducing waterlogging tolerance in a partially CmACS6-dependent manner. This study identified the regulatory module involving CmHRE2L and CmACS6, which governs ethylene biosynthesis in response to waterlogging stress.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"15"},"PeriodicalIF":10.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.). RsWRKY40 通过整合 RsSPS1 介导的蔗糖积累和萝卜(Raphanus sativus L.)中依赖 CBF 的途径来协调冷胁迫响应。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-02 DOI: 10.1186/s43897-024-00135-x
Sen Chen, Liang Xu, Yan Wang, Baozhen Mao, Xiaoli Zhang, Qiyu Song, Feng Cui, Yingbo Ma, Junhui Dong, Kai Wang, Hongyu Bi, Liwang Liu

Cold stress adversely affects crop growth and development. Radish is an important root vegetable crop, and its taproot formation is susceptible to low temperatures. However, the molecular basis of the cold stress response has not yet been fully dissected in radish. Here, a sucrose phosphate synthase gene (RsSPS1) was identified through a genome-wide association study and transcriptome analysis. RsSPS1 was responsible for sucrose synthesis, and sucrose was shown to be involved in taproot growth, cambium activity, and cold tolerance in radish. RsSPS1 regulated cambium activity and cold stress response by modulating sucrose content. Moreover, RsWRKY40 was identified as the upstream transcription activator of RsSPS1 by binding to its promoter. RsWRKY40 functioned in cambium activity and cold tolerance by modulating RsSPS1-mediated sucrose accumulation. Furthermore, RsWRKY40 promoted the RsCBF1 and RsCBF2 expression levels, resulting in elevated cold resilience. RsWRKY40 also enhanced its own transcription, forming a positive auto-regulatory loop to regulate cold stress response in radish. Together, a transcription module of RsWRKY40 orchestrated cold stress response by integrating sucrose accumulation and the CBF-dependent pathway was uncovered. These findings would provide novel insight into the molecular mechanism underlying cold-responsive sucrose accumulation and cambium activity and facilitate the genetic improvement of cold tolerance in radish breeding programs.

{"title":"RsWRKY40 coordinates the cold stress response by integrating RsSPS1-mediated sucrose accumulation and the CBF-dependent pathway in radish (Raphanus sativus L.).","authors":"Sen Chen, Liang Xu, Yan Wang, Baozhen Mao, Xiaoli Zhang, Qiyu Song, Feng Cui, Yingbo Ma, Junhui Dong, Kai Wang, Hongyu Bi, Liwang Liu","doi":"10.1186/s43897-024-00135-x","DOIUrl":"10.1186/s43897-024-00135-x","url":null,"abstract":"<p><p>Cold stress adversely affects crop growth and development. Radish is an important root vegetable crop, and its taproot formation is susceptible to low temperatures. However, the molecular basis of the cold stress response has not yet been fully dissected in radish. Here, a sucrose phosphate synthase gene (RsSPS1) was identified through a genome-wide association study and transcriptome analysis. RsSPS1 was responsible for sucrose synthesis, and sucrose was shown to be involved in taproot growth, cambium activity, and cold tolerance in radish. RsSPS1 regulated cambium activity and cold stress response by modulating sucrose content. Moreover, RsWRKY40 was identified as the upstream transcription activator of RsSPS1 by binding to its promoter. RsWRKY40 functioned in cambium activity and cold tolerance by modulating RsSPS1-mediated sucrose accumulation. Furthermore, RsWRKY40 promoted the RsCBF1 and RsCBF2 expression levels, resulting in elevated cold resilience. RsWRKY40 also enhanced its own transcription, forming a positive auto-regulatory loop to regulate cold stress response in radish. Together, a transcription module of RsWRKY40 orchestrated cold stress response by integrating sucrose accumulation and the CBF-dependent pathway was uncovered. These findings would provide novel insight into the molecular mechanism underlying cold-responsive sucrose accumulation and cambium activity and facilitate the genetic improvement of cold tolerance in radish breeding programs.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"14"},"PeriodicalIF":10.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus. 长读基因组测序揭示了梨自交不亲和基因座的序列特征。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-03-01 DOI: 10.1186/s43897-024-00132-0
Chao Gu, Ying Xu, Lei Wu, Xueping Wang, Kaijie Qi, Xin Qiao, Zewen Wang, Qionghou Li, Min He, Shaoling Zhang

The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S17-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S17-locus co-segregated with S17-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.

{"title":"Long-read genome sequencing reveals the sequence characteristics of pear self-incompatibility locus.","authors":"Chao Gu, Ying Xu, Lei Wu, Xueping Wang, Kaijie Qi, Xin Qiao, Zewen Wang, Qionghou Li, Min He, Shaoling Zhang","doi":"10.1186/s43897-024-00132-0","DOIUrl":"10.1186/s43897-024-00132-0","url":null,"abstract":"<p><p>The S-RNase-based self-incompatibility locus (S-locus) in Petunia species contains 16-20 F-box genes, which collaboratively function in the recognition and subsequent degradation of non-self S-RNases, while distinguishing them from self S-RNase. However, the number of S-locus F-box genes (SFBBs) physically interacted with non-self S-RNases remains uncertain in Pyrus species. Utilizing Pacbio long-read sequencing, we successfully assembled the genome of pear cultivar 'Yali' (Pyrus bretschneideri), and identified 19 SFBBs from the Pyrus S<sub>17</sub>-locus spanning approximately 1.78 Mb. Additionally, we identified 17-21 SFBBs from other Pyrus and Malus S-loci spanning a range of 1.35 to 2.64 Mb. Based on the phylogenetic analysis, it was determined that Pyrus and Malus SFBBs could be classified into 22 groups, denoted as I to XXII. At amino acid level, SFBBs within a given group exhibited average identities ranged from 88.9% to 97.9%. Notably, all 19 SFBBs from the S<sub>17</sub>-locus co-segregated with S<sub>17</sub>-RNase, with 18 of them being specifically expressed in pollen. Consequently, these 18 pollen-specifically expressed SFBBs are considered potential candidates for the pollen-S determinant. Intriguingly, out of the 18 pollen-specifically expressed SFBBs, eight demonstrated interactions with at least one non-self S-RNase, while the remaining SFBBs failed to recognize any S-RNase. These findings provide compelling evidence supporting the existence of a collaborative non-self-recognition system governing self-incompatibility in pear species.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"13"},"PeriodicalIF":10.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-02-28 DOI: 10.1186/s43897-025-00148-0
Yahui Lei, Songtao Jiu, Yan Xu, Baozheng Chen, Xiao Dong, Zhengxin Lv, Anthony Bernard, Xunju Liu, Lei Wang, Li Wang, Jiyuan Wang, Zhuo Zhang, Yuliang Cai, Wei Zheng, Xu Zhang, Fangdong Li, Hongwen Li, Congli Liu, Ming Li, Jing Wang, Jijun Zhu, Lei Peng, Teresa Barreneche, Fei Yu, Shiping Wang, Yang Dong, Dirlewanger Elisabeth, Shengchang Duan, Caixi Zhang
{"title":"Correction: Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries.","authors":"Yahui Lei, Songtao Jiu, Yan Xu, Baozheng Chen, Xiao Dong, Zhengxin Lv, Anthony Bernard, Xunju Liu, Lei Wang, Li Wang, Jiyuan Wang, Zhuo Zhang, Yuliang Cai, Wei Zheng, Xu Zhang, Fangdong Li, Hongwen Li, Congli Liu, Ming Li, Jing Wang, Jijun Zhu, Lei Peng, Teresa Barreneche, Fei Yu, Shiping Wang, Yang Dong, Dirlewanger Elisabeth, Shengchang Duan, Caixi Zhang","doi":"10.1186/s43897-025-00148-0","DOIUrl":"10.1186/s43897-025-00148-0","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"25"},"PeriodicalIF":10.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143531967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a ubiquitin-protein ligase MaUPL6 modulating the response to Fusarium wilt in banana. 鉴定调节香蕉对镰刀菌枯萎病反应的泛素蛋白连接酶 MaUPL6。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-02-05 DOI: 10.1186/s43897-024-00129-9
Yaoyao Li, Jingfang Shi, Yile Huo, Xueyi Xie, Qiaosong Yang, Chunhua Hu, Ou Sheng, Fangcheng Bi, Chunyu Li, Ganjun Yi, Wei Wei, Tongxin Dou
{"title":"Identification of a ubiquitin-protein ligase MaUPL6 modulating the response to Fusarium wilt in banana.","authors":"Yaoyao Li, Jingfang Shi, Yile Huo, Xueyi Xie, Qiaosong Yang, Chunhua Hu, Ou Sheng, Fangcheng Bi, Chunyu Li, Ganjun Yi, Wei Wei, Tongxin Dou","doi":"10.1186/s43897-024-00129-9","DOIUrl":"10.1186/s43897-024-00129-9","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"12"},"PeriodicalIF":10.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-02-04 DOI: 10.1186/s43897-024-00130-2
Daiquan Jiang, Huaibin Lin, Zhenhua Liu, Keke Qi, Wenjin Zhang, Hongyang Wang, Chengcai Zhang, Lu Zhu, Jiaojiao Zhu, Yan Zhang, Luqi Huang, Sheng Wang, Yang Pan, Lanping Guo
{"title":"Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities.","authors":"Daiquan Jiang, Huaibin Lin, Zhenhua Liu, Keke Qi, Wenjin Zhang, Hongyang Wang, Chengcai Zhang, Lu Zhu, Jiaojiao Zhu, Yan Zhang, Luqi Huang, Sheng Wang, Yang Pan, Lanping Guo","doi":"10.1186/s43897-024-00130-2","DOIUrl":"10.1186/s43897-024-00130-2","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"11"},"PeriodicalIF":10.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple.
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-02-03 DOI: 10.1186/s43897-024-00127-x
Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang

5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.

{"title":"5-Aminolevulinic acid activates the MdWRKY71-MdMADS1 module to enhance anthocyanin biosynthesis in apple.","authors":"Liuzi Zhang, Huihui Tao, Jianting Zhang, Yuyan An, Liangju Wang","doi":"10.1186/s43897-024-00127-x","DOIUrl":"10.1186/s43897-024-00127-x","url":null,"abstract":"<p><p>5-Aminolevulinic acid (ALA), as a natural plant growth regulator, is well known for promoting red fruit coloring by enhancing anthocyanin accumulation. However, the underlying mechanisms remain elusive. In this study, we firstly demonstrated that ALA upregulates gene expression of the transcription factor MdMADS1, which in turn directly binds to and activates transcription of the key anthocyanin biosynthetic genes, MdCHS and MdUFGT. Then, we identified a novel WRKY transcription factor, MdWRKY71, that interacts with MdMADS1. Through gene manipulation, we revealed that MdWRKY71 plays a pivotal role in ALA-induced anthocyanin accumulation, highlighting its regulatory significance in this process. Further investigation unveiled that MdWRKY71 not only activates MdMADS1 transcription but also enhances its transcriptional activation on its target genes, MdCHS and MdUFGT. Additionally, we discovered that MdWRKY71 independently binds to and activates the transcription of two other anthocyanin biosynthetic genes, MdANS and MdDFR. The protein-protein interaction between MdWRKY71 and MdMADS1 amplifies the transcriptional activation of these genes by MdWRKY71. These findings delineate a fine and complex regulatory framework where MdWRKY71 and MdMADS1 coordinately regulate anthocyanin biosynthesis in apples, providing new insights into the molecular control of fruit coloration and offering potential target genes for breeding aimed at enhancing fruit quality.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"10"},"PeriodicalIF":10.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Horticulture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1