Production of Highly Uniform Midbrain Organoids from Human Pluripotent Stem Cells.

IF 3.8 3区 医学 Q2 CELL & TISSUE ENGINEERING Stem Cells International Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.1155/2023/3320211
Xuerui Yao, Ji Hyun Kang, Kee-Pyo Kim, Hyogeun Shin, Zhe-Long Jin, Hao Guo, Yong-Nan Xu, Ying-Hua Li, Sai Hali, Jeongwoo Kwon, Hyeonwoo La, Chanhyeok Park, Yong-June Kim, Lin Wang, Kwonho Hong, Qilong Cao, Il-Joo Cho, Nam-Hyung Kim, Dong Wook Han
{"title":"Production of Highly Uniform Midbrain Organoids from Human Pluripotent Stem Cells.","authors":"Xuerui Yao, Ji Hyun Kang, Kee-Pyo Kim, Hyogeun Shin, Zhe-Long Jin, Hao Guo, Yong-Nan Xu, Ying-Hua Li, Sai Hali, Jeongwoo Kwon, Hyeonwoo La, Chanhyeok Park, Yong-June Kim, Lin Wang, Kwonho Hong, Qilong Cao, Il-Joo Cho, Nam-Hyung Kim, Dong Wook Han","doi":"10.1155/2023/3320211","DOIUrl":null,"url":null,"abstract":"<p><p>Brain organoids have been considered as an advanced platform for <i>in vitro</i> disease modeling and drug screening, but numerous roadblocks exist, such as lack of large-scale production technology and lengthy protocols with multiple manipulation steps, impeding the industrial translation of brain organoid technology. Here, we describe the high-speed and large-scale production of midbrain organoids using a high-throughput screening-compatible platform within 30 days. Micro midbrain organoids (<i>µ</i>MOs) exhibit a highly uniform morphology and gene expression pattern with minimal variability. Notably, <i>µ</i>MOs show dramatically accelerated maturation, resulting in the generation of functional <i>µ</i>MOs within only 30 days of differentiation. Furthermore, individual <i>µ</i>MOs display highly consistent responsiveness to neurotoxin, suggesting their usefulness as an <i>in vitro</i> high-throughput drug toxicity screening platform. Collectively, our data indicate that <i>µ</i>MO technology could represent an advanced and robust platform for <i>in vitro</i> disease modeling and drug screening for human neuronal diseases.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2023 ","pages":"3320211"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558263/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/3320211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Brain organoids have been considered as an advanced platform for in vitro disease modeling and drug screening, but numerous roadblocks exist, such as lack of large-scale production technology and lengthy protocols with multiple manipulation steps, impeding the industrial translation of brain organoid technology. Here, we describe the high-speed and large-scale production of midbrain organoids using a high-throughput screening-compatible platform within 30 days. Micro midbrain organoids (µMOs) exhibit a highly uniform morphology and gene expression pattern with minimal variability. Notably, µMOs show dramatically accelerated maturation, resulting in the generation of functional µMOs within only 30 days of differentiation. Furthermore, individual µMOs display highly consistent responsiveness to neurotoxin, suggesting their usefulness as an in vitro high-throughput drug toxicity screening platform. Collectively, our data indicate that µMO technology could represent an advanced and robust platform for in vitro disease modeling and drug screening for human neuronal diseases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从人类多能干细胞生产高度均匀的中脑类器官。
脑类器官被认为是体外疾病建模和药物筛选的先进平台,但存在许多障碍,如缺乏大规模生产技术和具有多个操作步骤的冗长协议,阻碍了脑类器官技术的工业转化。在这里,我们描述了使用高通量筛选兼容平台在30天内高速大规模生产中脑类器官。微中脑类器官(µMO)表现出高度一致的形态和基因表达模式,变异性最小。值得注意的是,µMO表现出显著加速的成熟,导致在分化后仅30天内产生功能性µMO。此外,单个µMO对神经毒素表现出高度一致的反应性,这表明它们作为体外高通量药物毒性筛选平台是有用的。总之,我们的数据表明,µMO技术可以代表一个先进而强大的平台,用于人类神经元疾病的体外疾病建模和药物筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cells International
Stem Cells International CELL & TISSUE ENGINEERING-
CiteScore
8.10
自引率
2.30%
发文量
188
审稿时长
18 weeks
期刊介绍: Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials. Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.
期刊最新文献
Comparative Analysis of the Therapeutic Effects of MSCs From Umbilical Cord, Bone Marrow, and Adipose Tissue and Investigating the Impact of Oxidized RNA on Radiation-Induced Lung Injury. ANXA1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells. IL-33-Pretreated Mesenchymal Stem Cells Attenuate Acute Liver Failure by Improving Homing and Polarizing M2 Macrophages. Mesenchymal Stem Cells and Tissue Bioengineering Applications in Sheep as Ideal Model. Wharton's Jelly Mesenchymal Stem Cell Conditioned Medium Ameliorates Diabetes-Induced Testicular Damage and Sperm Abnormalities by Mitigating Oxidative Stress, Apoptosis, and Inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1